两种电生理数据动态因果建模整合方法的比较。

Comparison of two integration methods for dynamic causal modeling of electrophysiological data.

机构信息

Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France; Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Ecole Normale Supérieure, ENS, Centre MEG-EEG, F-75013, Paris, France; Inserm, U1216, F-38000, Grenoble, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.

Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France; Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Ecole Normale Supérieure, ENS, Centre MEG-EEG, F-75013, Paris, France.

出版信息

Neuroimage. 2018 Jun;173:623-631. doi: 10.1016/j.neuroimage.2018.02.031. Epub 2018 Feb 17.

Abstract

Dynamic causal modeling (DCM) is a methodological approach to study effective connectivity among brain regions. Based on a set of observations and a biophysical model of brain interactions, DCM uses a Bayesian framework to estimate the posterior distribution of the free parameters of the model (e.g. modulation of connectivity) and infer architectural properties of the most plausible model (i.e. model selection). When modeling electrophysiological event-related responses, the estimation of the model relies on the integration of the system of delay differential equations (DDEs) that describe the dynamics of the system. In this technical note, we compared two numerical schemes for the integration of DDEs. The first, and standard, scheme approximates the DDEs (more precisely, the state of the system, with respect to conduction delays among brain regions) using ordinary differential equations (ODEs) and solves it with a fixed step size. The second scheme uses a dedicated DDEs solver with adaptive step sizes to control error, making it theoretically more accurate. To highlight the effects of the approximation used by the first integration scheme in regard to parameter estimation and Bayesian model selection, we performed simulations of local field potentials using first, a simple model comprising 2 regions and second, a more complex model comprising 6 regions. In these simulations, the second integration scheme served as the standard to which the first one was compared. Then, the performances of the two integration schemes were directly compared by fitting a public mismatch negativity EEG dataset with different models. The simulations revealed that the use of the standard DCM integration scheme was acceptable for Bayesian model selection but underestimated the connectivity parameters and did not allow an accurate estimation of conduction delays. Fitting to empirical data showed that the models systematically obtained an increased accuracy when using the second integration scheme. We conclude that inference on connectivity strength and delay based on DCM for EEG/MEG requires an accurate integration scheme.

摘要

动态因果建模(DCM)是一种研究大脑区域之间有效连接的方法。基于一组观察和大脑相互作用的生物物理模型,DCM 使用贝叶斯框架来估计模型的自由参数的后验分布(例如,连接的调制)并推断最合理模型的结构属性(即模型选择)。在对电生理事件相关反应进行建模时,模型的估计依赖于描述系统动力学的时滞微分方程(DDE)系统的集成。在本技术说明中,我们比较了两种用于 DDE 集成的数值方案。第一种也是标准的方案使用常微分方程(ODE)来近似 DDE(更准确地说是系统的状态,相对于大脑区域之间的传导延迟),并使用固定步长来求解它。第二种方案使用具有自适应步长的专用 DDE 求解器来控制误差,从理论上讲更加准确。为了突出第一种集成方案在参数估计和贝叶斯模型选择方面所使用的近似的影响,我们使用第一种方案模拟了局部场电位,该方案包括 2 个区域的简单模型和第二种方案包括 6 个区域的更复杂模型。在这些模拟中,第二种集成方案作为标准,与第一种方案进行比较。然后,通过使用不同模型拟合公共失匹配负 EEG 数据集,直接比较两种集成方案的性能。模拟结果表明,对于贝叶斯模型选择,使用标准 DCM 集成方案是可以接受的,但会低估连接参数,并且无法准确估计传导延迟。拟合到经验数据表明,当使用第二种集成方案时,模型系统地获得了更高的准确性。我们得出结论,基于 DCM 的 EEG/MEG 的连接强度和延迟推断需要准确的集成方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5342/5929904/3478499995b5/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索