Suppr超能文献

技术说明:用于电生理数据的 DCM 中延迟微分方程的快速稳健积分器。

Technical note: A fast and robust integrator of delay differential equations in DCM for electrophysiological data.

机构信息

Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, Zurich 8032, Switzerland.

Max Planck Institute for Metabolism Research, Gleuler Strasse 50, Cologne 50931, Germany; Cluster of Excellence in Cellular Stress and Aging associated Disease (CECAD), Cologne 50931, Germany.

出版信息

Neuroimage. 2021 Dec 1;244:118567. doi: 10.1016/j.neuroimage.2021.118567. Epub 2021 Sep 13.

Abstract

Dynamic causal models (DCMs) of electrophysiological data allow, in principle, for inference on hidden, bulk synaptic function in neural circuits. The directed influences between the neuronal elements of modeled circuits are subject to delays due to the finite transmission speed of axonal connections. Ordinary differential equations are therefore not adequate to capture the ensuing circuit dynamics, and delay differential equations (DDEs) are required instead. Previous work has illustrated that the integration of DDEs in DCMs benefits from sophisticated integration schemes in order to ensure rigorous parameter estimation and correct model identification. However, integration schemes that have been proposed for DCMs either emphasize speed (at the possible expense of accuracy) or robustness (but with computational costs that are problematic in practice). In this technical note, we propose an alternative integration scheme that overcomes these shortcomings and offers high computational efficiency while correctly preserving the nature of delayed effects. This integration scheme is available as open-source code in the Translational Algorithms for Psychiatry-Advancing Science (TAPAS) toolbox and can be easily integrated into existing software (SPM) for the analysis of DCMs for electrophysiological data. While this paper focuses on its application to the convolution-based formalism of DCMs, the new integration scheme can be equally applied to more advanced formulations of DCMs (e.g. conductance based models). Our method provides a new option for electrophysiological DCMs that offers the speed required for scientific projects, but also the accuracy required for rigorous translational applications, e.g. in computational psychiatry.

摘要

动态因果模型(DCMs)可以对神经回路中隐藏的、整体的突触功能进行推断,这是基于电生理数据得到的。所建模电路中神经元元素之间的有向影响由于轴突连接的有限传输速度而存在延迟。因此,普通微分方程不足以捕捉随后的电路动态,而需要使用延迟微分方程(DDEs)。以前的工作表明,为了确保严格的参数估计和正确的模型识别,DCMs 中 DDE 的整合需要复杂的整合方案。然而,已经为 DCMs 提出的整合方案要么强调速度(可能以牺牲准确性为代价),要么强调稳健性(但在实践中计算成本是有问题的)。在本技术说明中,我们提出了一种替代的整合方案,该方案克服了这些缺点,在正确保留延迟效应本质的同时提供了高计算效率。该整合方案可作为 Translational Algorithms for Psychiatry-Advancing Science (TAPAS) 工具箱中的开源代码使用,并可轻松集成到现有的 DCM 分析软件(SPM)中,用于电生理数据。虽然本文重点介绍了它在 DCM 卷积形式主义中的应用,但新的整合方案同样适用于更先进的 DCM 公式(例如基于电导率的模型)。我们的方法为电生理 DCMs 提供了一种新的选择,它提供了科学项目所需的速度,也提供了严格的转化应用所需的准确性,例如在计算精神病学中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验