Damiati Samar, Kompella Uday B, Damiati Safa A, Kodzius Rimantas
Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
Department of Pharmaceutical Sciences, Ophthalmology, and Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
Genes (Basel). 2018 Feb 16;9(2):103. doi: 10.3390/genes9020103.
Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system.
微流控设备在高效药物载体颗粒、无细胞蛋白质合成系统以及直接药物筛选的快速技术开发方面具有独特优势。与批量方法相比,通过有效控制制造芯片的几何形状和多相流体的流速,微流控技术能够生成具有更高封装效率的高度稳定、均匀、单分散的颗粒。由于现有的临床前模型在预测临床结果方面药物筛选效率低下,微流控平台可能提供一种更快且更具成本效益的替代方案。与二维细胞培养系统和体内动物模型相比,微流控三维平台以简单、廉价的方式模拟体内细胞系统,这使得在细胞、器官和全身水平上进行高通量和多重药物筛选成为可能。在这篇综述中,重点介绍了使用不同配置的微流控设备生成包括不同颗粒类型在内的合适药物或基因载体。此外,本文还讨论了用于即时护理的人造微流控无细胞蛋白质合成系统的出现,以及作为智能、灵敏和可重复平台的芯片上细胞、器官和人体模型,这些模型能够在模拟生物系统的条件下研究药物的作用。