Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA.
Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA; Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
Adv Drug Deliv Rev. 2018 Mar 15;128:3-28. doi: 10.1016/j.addr.2017.09.013. Epub 2017 Sep 15.
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery.
传统的系统给药药物在穿过许多生物屏障时均匀分布在全身,迅速降解和排泄,在病理部位留下的药物量最小。控制药物释放旨在以所需的速率和时间将药物递送到靶部位,从而提高药物的疗效、药代动力学和生物利用度,同时保持最小的副作用。由于最近的微流控芯片实验室技术具有许多独特的优势,微流控芯片实验室为控制药物释放提供了前所未有的机会。通过微流控平台,药物可以通过整合、植入、定位、自动化和精确控制各种微器件参数,以所需的速率高效地递送到靶部位,从而实现精确控制。这些特性使得可重复、按需和可调的药物释放成为可能。按需自调动态药物释放系统在个性化药物输送方面显示出巨大的潜力。本文综述了利用微流控平台进行控制药物释放的最新进展。本文首先简要介绍了微流控平台的微制造技术,然后详细描述了许多显著推进控制药物释放领域的微流控药物输送系统。这些微流控系统可分为四大类,即无药物载体的微储库药物输送系统、高度集成的无药物载体微流控芯片系统、药物载体集成的微流控系统和微针。微针可进一步分为五种不同类型,即实心、多孔、空心、涂层和可生物降解微针,用于控制经皮药物输送。最后,我们讨论了微流控平台在控制药物释放方面的当前局限性和未来前景。
Adv Drug Deliv Rev. 2017-9-15
Curr Pharm Biotechnol. 2016
Pharmaceutics. 2022-2-17
Biomed Microdevices. 2004-9
Prog Mol Biol Transl Sci. 2022
J Control Release. 2014-5-5
Annu Rev Biomed Eng. 2000
J Pharm Pharmacol. 2011-11-4
Micromachines (Basel). 2025-5-17
Adv Sci (Weinh). 2025-5
Heliyon. 2025-1-10
Recent Adv Drug Deliv Formul. 2024
Curr Drug Deliv. 2024
J Mater Chem B. 2014-1-14
Curr Opin Chem Eng. 2015-2
J Control Release. 2017-3-6
Wiley Interdiscip Rev Syst Biol Med. 2017-7
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017-9