文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

iPSC 来源的人脑微血管内皮细胞的功能性脑特异性微血管:基质组成对单层形成的作用。

Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation.

机构信息

Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Fluids Barriers CNS. 2018 Feb 20;15(1):7. doi: 10.1186/s12987-018-0092-7.


DOI:10.1186/s12987-018-0092-7
PMID:29463314
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5819713/
Abstract

BACKGROUND: Transwell-based models of the blood-brain barrier (BBB) incorporating monolayers of human brain microvascular endothelial cells (dhBMECs) derived from induced pluripotent stem cells show many of the key features of the BBB, including expression of transporters and efflux pumps, expression of tight junction proteins, and physiological values of transendothelial electrical resistance. The fabrication of 3D BBB models using dhBMECs has so far been unsuccessful due to the poor adhesion and survival of these cells on matrix materials commonly used in tissue engineering. METHODS: To address this issue, we systematically screened a wide range of matrix materials (collagen I, hyaluronic acid, and fibrin), compositions (laminin/entactin), protein coatings (fibronectin, laminin, collagen IV, perlecan, and agrin), and soluble factors (ROCK inhibitor and cyclic adenosine monophosphate) in 2D culture to assess cell adhesion, spreading, and barrier function. RESULTS: Cell coverage increased with stiffness of collagen I gels coated with collagen IV and fibronectin. On 7 mg mL collagen I gels coated with basement membrane proteins (fibronectin, collagen IV, and laminin), cell coverage was high but did not reliably reach confluence. The transendothelial electrical resistance (TEER) on collagen I gels coated with basement membrane proteins was lower than on coated transwell membranes. Agrin, a heparin sulfate proteoglycan found in basement membranes of the brain, promoted monolayer formation but resulted in a significant decrease in transendothelial electrical resistance (TEER). However, the addition of ROCK inhibitor, cAMP, or cross-linking the gels to increase stiffness, resulted in a significant improvement of TEER values and enabled the formation of confluent monolayers. CONCLUSIONS: Having identified matrix compositions that promote monolayer formation and barrier function, we successfully fabricated dhBMEC microvessels in cross-linked collagen I gels coated with fibronectin and collagen IV, and treated with ROCK inhibitor and cAMP. We measured apparent permeability values for Lucifer yellow, comparable to values obtained in the transwell assay. During these experiments we observed no focal leaks, suggesting the formation of tight junctions that effectively block paracellular transport.

摘要

背景:基于 Transwell 的血脑屏障(BBB)模型,其中包含源自诱导多能干细胞的人脑微血管内皮细胞(dhBMEC)的单层,显示出 BBB 的许多关键特征,包括转运体和外排泵的表达、紧密连接蛋白的表达以及跨内皮电阻的生理值。迄今为止,使用 dhBMEC 制造 3D BBB 模型尚未成功,因为这些细胞在组织工程中常用的基质材料上的粘附和存活能力较差。

方法:为了解决这个问题,我们系统地筛选了广泛的基质材料(I 型胶原、透明质酸和纤维蛋白)、成分(层粘连蛋白/entactin)、蛋白质涂层(纤连蛋白、层粘连蛋白、IV 型胶原、perlecan 和 agrin)和可溶性因子(ROCK 抑制剂和环磷酸腺苷)在 2D 培养中评估细胞粘附、扩散和屏障功能。

结果:细胞覆盖率随涂有 IV 型胶原和纤连蛋白的 I 型胶原凝胶的刚度增加而增加。在涂有基底膜蛋白(纤连蛋白、IV 型胶原和层粘连蛋白)的 7mg/mL I 型胶原凝胶上,细胞覆盖率很高,但不能可靠地达到汇合。涂有基底膜蛋白的 I 型胶原凝胶的跨内皮电阻(TEER)低于涂有 Transwell 膜的 TEER。脑基底膜中的硫酸乙酰肝素蛋白聚糖 agrin 促进了单层的形成,但导致跨内皮电阻(TEER)显著降低。然而,添加 ROCK 抑制剂、cAMP 或交联凝胶以增加刚度可显著提高 TEER 值并形成致密的单层。

结论:我们已经确定了促进单层形成和屏障功能的基质成分,成功地在涂有纤连蛋白和 IV 型胶原的交联 I 型胶原凝胶中制造了 dhBMEC 微血管,并使用 ROCK 抑制剂和 cAMP 进行了处理。我们测量了 Lucifer yellow 的表观渗透率值,与 Transwell 测定中获得的值相当。在这些实验中,我们没有观察到焦点泄漏,这表明形成了有效的阻止细胞旁转运的紧密连接。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/490b/5819713/e1f17fc821a4/12987_2018_92_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/490b/5819713/80de6733445a/12987_2018_92_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/490b/5819713/3ffe2fbadf83/12987_2018_92_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/490b/5819713/b068ed91e633/12987_2018_92_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/490b/5819713/e1f17fc821a4/12987_2018_92_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/490b/5819713/80de6733445a/12987_2018_92_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/490b/5819713/3ffe2fbadf83/12987_2018_92_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/490b/5819713/b068ed91e633/12987_2018_92_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/490b/5819713/e1f17fc821a4/12987_2018_92_Fig4_HTML.jpg

相似文献

[1]
Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation.

Fluids Barriers CNS. 2018-2-20

[2]
Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior.

Biomaterials. 2018-10-25

[3]
Role of iPSC-derived pericytes on barrier function of iPSC-derived brain microvascular endothelial cells in 2D and 3D.

Fluids Barriers CNS. 2019-6-6

[4]
Real-time acquisition of transendothelial electrical resistance in an all-human, , 3-dimensional, blood-brain barrier model exemplifies tight-junction integrity.

FASEB J. 2017-9-7

[5]
Laminin 221 fragment is suitable for the differentiation of human induced pluripotent stem cells into brain microvascular endothelial-like cells with robust barrier integrity.

Fluids Barriers CNS. 2020-3-30

[6]
Long-Term Cryopreservation Preserves Blood-Brain Barrier Phenotype of iPSC-Derived Brain Microvascular Endothelial Cells and Three-Dimensional Microvessels.

Mol Pharm. 2020-9-8

[7]
Derivation, Expansion, Cryopreservation and Characterization of Brain Microvascular Endothelial Cells from Human Induced Pluripotent Stem Cells.

J Vis Exp. 2020-11-19

[8]
Tissue-engineered blood-brain barrier models via directed differentiation of human induced pluripotent stem cells.

Sci Rep. 2019-9-27

[9]
Quantitatively relating brain endothelial cell-cell junction phenotype to global and local barrier properties under varied culture conditions via the Junction Analyzer Program.

Fluids Barriers CNS. 2020-2-11

[10]
Cerebral hypoxia/ischemia selectively disrupts tight junctions complexes in stem cell-derived human brain microvascular endothelial cells.

Fluids Barriers CNS. 2016-10-11

引用本文的文献

[1]
Substrate stiffness and shear stress collectively regulate the inflammatory phenotype in cultured human brain microvascular endothelial cells.

Fluids Barriers CNS. 2025-7-15

[2]
Multiple sclerosis: etiology in the context of neurovascular unit and immune system involvement and advancements with blood-brain barrier models.

Front Immunol. 2025-6-10

[3]
A Cost-Effective and Easy to Assemble 3D Human Microchannel Blood-Brain Barrier Model and Its Application in Tumor Cell Adhesion Under Flow.

Cells. 2025-3-19

[4]
Tissue-Engineered Microvessels: A Review of Current Engineering Strategies and Applications.

Adv Healthc Mater. 2024-8

[5]
Specific nanoprobe design for MRI: Targeting laminin in the blood-brain barrier to follow alteration due to neuroinflammation.

PLoS One. 2024

[6]
Modular tissue-in-a-CUBE platform to model blood-brain barrier (BBB) and brain interaction.

Commun Biol. 2024-2-28

[7]
An Induced Pluripotent Stem Cell-Derived Human Blood-Brain Barrier (BBB) Model to Test the Crossing by Adeno-Associated Virus (AAV) Vectors and Antisense Oligonucleotides.

Biomedicines. 2023-10-4

[8]
A Rapid-Patterning 3D Vessel-on-Chip for Imaging and Quantitatively Analyzing Cell-Cell Junction Phenotypes.

Bioengineering (Basel). 2023-9-13

[9]
A least-squares-fitting procedure for an efficient preclinical ranking of passive transport across the blood-brain barrier endothelium.

J Comput Aided Mol Des. 2023-11

[10]
The contribution of inflammatory astrocytes to BBB impairments in a brain-chip model of Parkinson's disease.

Nat Commun. 2023-6-20

本文引用的文献

[1]
Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells.

Sci Adv. 2017-11-8

[2]
Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs).

Fluids Barriers CNS. 2017-8-4

[3]
The vascular basement membrane in the healthy and pathological brain.

J Cereb Blood Flow Metab. 2017-10

[4]
Huntington's Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits.

Cell Rep. 2017-5-16

[5]
Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells.

Fluids Barriers CNS. 2017-4-13

[6]
Real-time quantification of endothelial response to shear stress and vascular modulators.

Integr Biol (Camb). 2017-4-18

[7]
Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells.

Stem Cell Reports. 2017-3-23

[8]
In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells.

Biochem Biophys Res Commun. 2017-4-29

[9]
Tissue-engineered 3D microvessel and capillary network models for the study of vascular phenomena.

Microcirculation. 2017-7

[10]
Minimum Transendothelial Electrical Resistance Thresholds for the Study of Small and Large Molecule Drug Transport in a Human in Vitro Blood-Brain Barrier Model.

Mol Pharm. 2016-12-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索