文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

特定的 MRI 纳米探针设计:靶向血脑屏障中的层粘连蛋白,以跟踪神经炎症引起的变化。

Specific nanoprobe design for MRI: Targeting laminin in the blood-brain barrier to follow alteration due to neuroinflammation.

机构信息

Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.

Grupo de Biología Celular y Funcional e Ingeniería de Biomoleculas, Departamento de Biología, Universidad Antonio Nariño, Bogotá, Colombia.

出版信息

PLoS One. 2024 Apr 11;19(4):e0302031. doi: 10.1371/journal.pone.0302031. eCollection 2024.


DOI:10.1371/journal.pone.0302031
PMID:38603692
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11008835/
Abstract

Chronic neuroinflammation is characterized by increased blood-brain barrier (BBB) permeability, leading to molecular changes in the central nervous system that can be explored with biomarkers of active neuroinflammatory processes. Magnetic resonance imaging (MRI) has contributed to detecting lesions and permeability of the BBB. Ultra-small superparamagnetic particles of iron oxide (USPIO) are used as contrast agents to improve MRI observations. Therefore, we validate the interaction of peptide-88 with laminin, vectorized on USPIO, to explore BBB molecular alterations occurring during neuroinflammation as a potential tool for use in MRI. The specific labeling of NPS-P88 was verified in endothelial cells (hCMEC/D3) and astrocytes (T98G) under inflammation induced by interleukin 1β (IL-1β) for 3 and 24 hours. IL-1β for 3 hours in hCMEC/D3 cells increased their co-localization with NPS-P88, compared with controls. At 24 hours, no significant differences were observed between groups. In T98G cells, NPS-P88 showed similar nonspecific labeling among treatments. These results indicate that NPS-P88 has a higher affinity towards brain endothelial cells than astrocytes under inflammation. This affinity decreases over time with reduced laminin expression. In vivo results suggest that following a 30-minute post-injection, there is an increased presence of NPS-P88 in the blood and brain, diminishing over time. Lastly, EAE animals displayed a significant accumulation of NPS-P88 in MRI, primarily in the cortex, attributed to inflammation and disruption of the BBB. Altogether, these results revealed NPS-P88 as a biomarker to evaluate changes in the BBB due to neuroinflammation by MRI in biological models targeting laminin.

摘要

慢性神经炎症的特征是血脑屏障(BBB)通透性增加,导致中枢神经系统的分子变化,可以通过活跃的神经炎症过程的生物标志物来探索。磁共振成像(MRI)有助于检测病变和 BBB 的通透性。超顺磁性氧化铁(USPIO)的超小超顺磁性颗粒被用作对比剂来改善 MRI 观察。因此,我们验证了肽-88 与层粘连蛋白的相互作用,将其载体化到 USPIO 上,以探索神经炎症过程中发生的 BBB 分子改变,作为 MRI 中潜在的工具。在由白细胞介素 1β(IL-1β)诱导的炎症下,内皮细胞(hCMEC/D3)和星形胶质细胞(T98G)中验证了 NPS-P88 的特异性标记 3 小时和 24 小时。与对照组相比,IL-1β 在 hCMEC/D3 细胞中诱导 3 小时可增加其与 NPS-P88 的共定位。在 24 小时时,各组之间未观察到显着差异。在 T98G 细胞中,NPS-P88 在所有处理中均显示出相似的非特异性标记。这些结果表明,在炎症下,NPS-P88 与星形胶质细胞相比,对脑内皮细胞具有更高的亲和力。随着层粘连蛋白表达的减少,这种亲和力随时间而降低。体内结果表明,在注射后 30 分钟,NPS-P88 在血液和大脑中的存在增加,随着时间的推移而减少。最后,EAE 动物在 MRI 中显示出 NPS-P88 的显着积累,主要在皮质中,归因于炎症和 BBB 的破坏。总之,这些结果表明,NPS-P88 可作为生物标志物,通过针对层粘连蛋白的生物模型的 MRI 评估神经炎症引起的 BBB 变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/9223a431ddce/pone.0302031.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/d4b4fc21350b/pone.0302031.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/8ffb0050354e/pone.0302031.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/9d2ba2cb4d5d/pone.0302031.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/0fdc85525814/pone.0302031.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/abcad61eabc5/pone.0302031.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/a2f2d33fbb50/pone.0302031.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/9223a431ddce/pone.0302031.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/d4b4fc21350b/pone.0302031.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/8ffb0050354e/pone.0302031.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/9d2ba2cb4d5d/pone.0302031.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/0fdc85525814/pone.0302031.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/abcad61eabc5/pone.0302031.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/a2f2d33fbb50/pone.0302031.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d70/11008835/9223a431ddce/pone.0302031.g007.jpg

相似文献

[1]
Specific nanoprobe design for MRI: Targeting laminin in the blood-brain barrier to follow alteration due to neuroinflammation.

PLoS One. 2024

[2]
Screening for Interacting Proteins with Peptide Biomarker of Blood-Brain Barrier Alteration under Inflammatory Conditions.

Int J Mol Sci. 2021-4-29

[3]
Laminin as a Biomarker of Blood-Brain Barrier Disruption under Neuroinflammation: A Systematic Review.

Int J Mol Sci. 2022-6-17

[4]
TNF-α and IL-1β Modulate Blood-Brain Barrier Permeability and Decrease Amyloid-β Peptide Efflux in a Human Blood-Brain Barrier Model.

Int J Mol Sci. 2022-9-6

[5]
Endothelial cell activation by interleukin-1 and extracellular matrix laminin-10 occurs via the YAP signalling pathway.

J Neuroimmunol. 2022-12-15

[6]
Transfer of neuron-derived α-synuclein to astrocytes induces neuroinflammation and blood-brain barrier damage after methamphetamine exposure: Involving the regulation of nuclear receptor-associated protein 1.

Brain Behav Immun. 2022-11

[7]
Comparison of USPIO-enhanced MRI and Gd-DTPA enhancement during the subacute stage of focal cerebral ischemia in rats.

Acta Radiol. 2014-9

[8]
Long-lasting blood-brain barrier dysfunction and neuroinflammation after traumatic brain injury.

Neurobiol Dis. 2020-11

[9]
The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro.

J Neuroinflammation. 2016-2-1

[10]
A face-to-face comparison of claudin-5 transduced human brain endothelial (hCMEC/D3) cells with porcine brain endothelial cells as blood-brain barrier models for drug transport studies.

Fluids Barriers CNS. 2020-8-26

引用本文的文献

[1]
Nanoprobe for blood-brain barrier changes.

Nat Rev Neurol. 2024-6

本文引用的文献

[1]
Binary and ternary Pt-based clusters grown in a plasma multimagnetron-based gas aggregation source: electrocatalytic evaluation towards glycerol oxidation.

Nanoscale Adv. 2021-1-19

[2]
Laminin as a Biomarker of Blood-Brain Barrier Disruption under Neuroinflammation: A Systematic Review.

Int J Mol Sci. 2022-6-17

[3]
Preparation and characterization of peptide modified ultrasmall superparamagnetic iron oxides used as tumor targeting MRI contrast agent.

RSC Adv. 2019-6-20

[4]
Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction.

Front Cell Neurosci. 2021-9-13

[5]
Biology and Models of the Blood-Brain Barrier.

Annu Rev Biomed Eng. 2021-7-13

[6]
Screening for Interacting Proteins with Peptide Biomarker of Blood-Brain Barrier Alteration under Inflammatory Conditions.

Int J Mol Sci. 2021-4-29

[7]
Flow induces barrier and glycocalyx-related genes and negative surface charge in a lab-on-a-chip human blood-brain barrier model.

J Cereb Blood Flow Metab. 2021-9

[8]
A Comprehensive View on MRI Techniques for Imaging Blood-Brain Barrier Integrity.

Invest Radiol. 2021-1

[9]
Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain.

J Control Release. 2020-4-10

[10]
Basement membrane and blood-brain barrier.

Stroke Vasc Neurol. 2019-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索