Suppr超能文献

利用新型竞争内源性 RNA 网络推断多种癌症类型的个体药物反应。

Inferences of individual drug responses across diverse cancer types using a novel competing endogenous RNA network.

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, China.

Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

出版信息

Mol Oncol. 2018 Sep;12(9):1429-1446. doi: 10.1002/1878-0261.12181. Epub 2018 Jul 14.

Abstract

Differences in individual drug responses are an obstacle to progression in cancer treatment, and predicting responses would help to plan treatment. The accumulation of cancer molecular profiling and drug response data provides opportunities and challenges to identify novel molecular signatures and mechanisms of tumor responsiveness to drugs. This study evaluated drug responses with a competing endogenous RNA (ceRNA) system that depended on competition between diverse RNA species. We identified drug response-related ceRNA (DRCEs) by combining the sequence and expression data of long noncoding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA), and the survival data of cancer patients treated with drugs. We constructed a patient-drug two-layer integrated network and used a linear weighting method to predict individual drug responses. DRCEs were found to be significantly enriched in known cancer and drug-associated data resources, involved in biological processes known to mediate drug responses, and correlated to drug activity in cancer cell lines. The dysregulation of DRCE expression influenced drug response-associated functions and pathways, suggesting DRCEs as potential therapeutic targets affecting drug responses. A further case study in breast invasive carcinoma (BRCA) found that DRCE expression was consistent with the drug response pattern and the aberrant expression of the two NEAT1-related DRCEs may lead to poor response to tamoxifen therapy for patients with TP53 mutations. In summary, this study provides a framework for ceRNA-based evaluation of clinical drug responses across multiple cancer types. Understanding the underlying molecular mechanisms of drug responses will allow improved response to chemotherapy and outcomes of cancer treatment.

摘要

个体药物反应的差异是癌症治疗进展的障碍,预测反应有助于治疗计划。癌症分子谱和药物反应数据的积累为识别新型分子特征和肿瘤对药物反应的机制提供了机会和挑战。本研究通过竞争内源性 RNA (ceRNA) 系统评估药物反应,该系统依赖于不同 RNA 物种之间的竞争。我们通过整合长非编码 RNA (lncRNA)、microRNA (miRNA) 和信使 RNA (mRNA) 的序列和表达数据以及接受药物治疗的癌症患者的生存数据,鉴定了与药物反应相关的 ceRNA (DRCEs)。我们构建了患者-药物双层综合网络,并使用线性加权方法预测个体药物反应。DRCEs 在已知的癌症和药物相关数据资源中显著富集,参与已知介导药物反应的生物过程,并与癌细胞系中的药物活性相关。DRCE 表达的失调影响药物反应相关的功能和途径,表明 DRCEs 可能是影响药物反应的潜在治疗靶点。在乳腺浸润性癌 (BRCA) 的进一步案例研究中发现,DRCE 表达与药物反应模式一致,两个 NEAT1 相关的 DRCEs 的异常表达可能导致携带 TP53 突变的患者对他莫昔芬治疗反应不佳。总之,本研究为跨多种癌症类型的基于 ceRNA 的临床药物反应评估提供了一个框架。了解药物反应的潜在分子机制将允许改善对化疗的反应和癌症治疗的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c67/6120231/f08bc4ecc45a/MOL2-12-1429-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验