NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
Angew Chem Int Ed Engl. 2018 Apr 16;57(17):4571-4575. doi: 10.1002/anie.201713158. Epub 2018 Mar 13.
Chromatin function depends on a dense network of interactions between nucleosomes and a wide range of proteins. A detailed description of these protein-nucleosome interactions is required to reach a full molecular understanding of chromatin function in both genetics and epigenetics. Herein, we show that the structure, dynamics, and interactions of nucleosomes can be interrogated in a residue-specific manner by using state-of-the-art solid-state NMR spectroscopy. Using sedimented nucleosomes, high-resolution spectra were obtained for both flexible histone tails and the non-mobile histone core. Through co-sedimentation of a nucleosome-binding peptide, we demonstrate that protein-binding sites on the nucleosome surface can be determined. We believe that this approach holds great promise as it is generally applicable, extendable to include the structure and dynamics of the bound proteins, and scalable to interactions of proteins with higher-order chromatin structures, including isolated and cellular chromatin.
染色质的功能取决于核小体与广泛的蛋白质之间密集的相互作用网络。为了全面了解遗传学和表观遗传学中染色质的功能,需要详细描述这些蛋白质-核小体的相互作用。本文中,我们展示了使用最先进的固态 NMR 光谱技术,可以以残基特异性的方式研究核小体的结构、动态和相互作用。使用沉淀核小体,我们获得了柔性组蛋白尾部和非运动组蛋白核心的高分辨率光谱。通过共沉淀核小体结合肽,我们证明可以确定核小体表面的蛋白质结合位点。我们相信,这种方法具有很大的应用前景,因为它具有普遍性,可扩展到结合蛋白的结构和动力学,并且可扩展到蛋白质与包括分离的和细胞内的染色质在内的更高阶染色质结构的相互作用。