Tecnológico Nacional de México, 29000 Tuxtla Gutiérrez, Chiapas, Mexico.
Institut Pascal, Université Clermont Auvergne, 63178 Clermont Ferrand, France.
Sensors (Basel). 2018 Feb 22;18(2):650. doi: 10.3390/s18020650.
This work introduces a new vision-based approach for estimating chlorophyll contents in a plant leaf using reflectance and transmittance as base parameters. Images of the top and underside of the leaf are captured. To estimate the base parameters (reflectance/transmittance), a novel optical arrangement is proposed. The chlorophyll content is then estimated by using linear regression where the inputs are the reflectance and transmittance of the leaf. Performance of the proposed method for chlorophyll content estimation was compared with a spectrophotometer and a Soil Plant Analysis Development (SPAD) meter. Chlorophyll content estimation was realized for L., , , and . Experimental results showed that-in terms of accuracy and processing speed-the proposed algorithm outperformed many of the previous vision-based approach methods that have used SPAD as a reference device. On the other hand, the accuracy reached is 91% for crops such as , where the chlorophyll value was obtained using the spectrophotometer. Additionally, it was possible to achieve an estimation of the chlorophyll content in the leaf every 200 ms with a low-cost camera and a simple optical arrangement. This non-destructive method increased accuracy in the chlorophyll content estimation by using an optical arrangement that yielded both the reflectance and transmittance information, while the required hardware is cheap.
这项工作提出了一种新的基于视觉的方法,使用反射率和透射率作为基本参数来估计植物叶片中的叶绿素含量。捕获叶片的顶面和底面的图像。为了估计基本参数(反射率/透射率),提出了一种新颖的光学布置。然后通过使用线性回归来估计叶绿素含量,其中输入是叶片的反射率和透射率。将所提出的方法的性能与分光光度计和土壤植物分析开发(SPAD)计进行了比较。实现了对 、 、 、 等的叶绿素含量估计。实验结果表明,就准确性和处理速度而言,该算法优于许多先前使用 SPAD 作为参考设备的基于视觉的方法。另一方面,对于 使用分光光度计获得叶绿素值的 等作物,达到了 91%的精度。此外,使用低成本相机和简单的光学布置,可以实现每 200ms 对叶片中叶绿素含量的估计。这种非破坏性方法通过使用既产生反射率又产生透射率信息的光学布置来提高叶绿素含量估计的准确性,而所需的硬件价格低廉。