From the Departments of Anesthesiology and Critical Care Medicine (D.P., Y.N., M.C.R., D.H., A.B., L.S., D.B., L.R.), Cell Biology (L.R.), Biomedical Engineering (D.B., L.R.), and Pediatrics, and the Center for Cell Dynamics (L.R.), Division of Cardiology (G.K., T.L.), and Division of Pulmonary and Critical Care Medicine, Department of Medicine (L.A.S.), Johns Hopkins Medical Institutions, Baltimore, MD.
Arterioscler Thromb Vasc Biol. 2018 Apr;38(4):913-926. doi: 10.1161/ATVBAHA.117.310660. Epub 2018 Feb 22.
KLF15 (Kruppel-like factor 15) has recently been shown to suppress activation of proinflammatory processes that contribute to atherogenesis in vascular smooth muscle, however, the role of KLF15 in vascular endothelial function is unknown. Arginase mediates inflammatory vasculopathy and vascular injury in pulmonary hypertension. Here, we tested the hypothesis that KLF15 is a critical regulator of hypoxia-induced Arg2 (arginase 2) transcription in human pulmonary microvascular endothelial cells (HPMEC).
Quiescent HPMEC express ample amounts of full-length KLF15. HPMECs exposed to 24 hours of hypoxia exhibited a marked decrease in KLF15 protein levels and a reciprocal increase in Arg2 protein and mRNA. Chromatin immunoprecipitation indicated direct binding of KLF15 to the Arg2 promoter, which was relieved with HPMEC exposure to hypoxia. Furthermore, overexpression of KLF15 in HPMEC reversed hypoxia-induced augmentation of Arg2 abundance and arginase activity and rescued nitric oxide (NO) production. Ectopic KLF15 also reversed hypoxia-induced endothelium-mediated vasodilatation in isolated rat pulmonary artery rings. Mechanisms by which hypoxia regulates KLF15 abundance, stability, and compartmentalization to the nucleus in HPMEC were then investigated. Hypoxia triggered deSUMOylation of KLF15 by SENP1 (sentrin-specific protease 1), and translocation of KLF15 from nucleus to cytoplasm.
KLF15 is a critical regulator of pulmonary endothelial homeostasis via repression of endothelial Arg2 expression. KLF15 abundance and nuclear compartmentalization are regulated by SUMOylation/deSUMOylation-a hypoxia-sensitive process that is controlled by SENP1. Strategies including overexpression of KLF15 or inhibition of SENP1 may represent novel therapeutic targets for pulmonary hypertension.
KLF15(Kruppel 样因子 15)最近被证明可抑制血管平滑肌中导致动脉粥样硬化的促炎过程的激活,然而,KLF15 在血管内皮功能中的作用尚不清楚。精氨酸酶介导炎症性血管病和肺动脉高压中的血管损伤。在这里,我们测试了 KLF15 是人类肺微血管内皮细胞(HPMEC)中缺氧诱导的 Arg2(精氨酸酶 2)转录的关键调节因子的假设。
静止的 HPMEC 表达大量全长 KLF15。暴露于 24 小时缺氧的 HPMEC 表现出 KLF15 蛋白水平的显着降低,以及 Arg2 蛋白和 mRNA 的反式增加。染色质免疫沉淀表明 KLF15 直接结合 Arg2 启动子,HPMEC 暴露于缺氧时会缓解这种结合。此外,在 HPMEC 中转染过量的 KLF15 可逆转缺氧诱导的 Arg2 丰度和精氨酸酶活性增加,并挽救一氧化氮(NO)的产生。异位 KLF15 还逆转了缺氧诱导的大鼠离体肺动脉环内皮介导的血管舒张。然后研究了缺氧调节 HPMEC 中 KLF15 丰度、稳定性和核区室化的机制。缺氧触发 SENP1(Sentrin 特异性蛋白酶 1)对 KLF15 的去 SUMO 化,以及 KLF15 从核到细胞质的易位。
KLF15 通过抑制内皮 Arg2 表达来调节肺内皮稳态,KLF15 的丰度和核区室化受 SUMOylation/deSUMOylation 调节,这是一种受 SENP1 控制的缺氧敏感过程。包括过表达 KLF15 或抑制 SENP1 在内的策略可能是肺动脉高压的新治疗靶点。