Andersson Erik P, McGawley Kerry
Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.
Front Physiol. 2018 Feb 8;9:82. doi: 10.3389/fphys.2018.00082. eCollection 2018.
The present study aimed to compare four methods of estimating anaerobic energy production during supramaximal exercise. Twenty-one junior cross-country skiers competing at a national and/or international level were tested on a treadmill during uphill (7°) diagonal-stride (DS) roller-skiing. After a 4-minute warm-up, a 4 × 4-min continuous submaximal protocol was performed followed by a 600-m time trial (TT). For the maximal accumulated O deficit (MAOD) method the [Formula: see text]O-speed regression relationship was used to estimate the [Formula: see text]O demand during the TT, either including (4+Y, method 1) or excluding (4-Y, method 2) a fixed Y-intercept for baseline [Formula: see text]O. The gross efficiency (GE) method (method 3) involved calculating metabolic rate during the TT by dividing power output by submaximal GE, which was then converted to a [Formula: see text]O demand. An alternative method based on submaximal energy cost (EC, method 4) was also used to estimate [Formula: see text]O demand during the TT. The GE/EC remained constant across the submaximal stages and the supramaximal TT was performed in 185 ± 24 s. The GE and EC methods produced identical [Formula: see text]O demands and O deficits. The [Formula: see text]O demand was ~3% lower for the 4+Y method compared with the 4-Y and GE/EC methods, with corresponding O deficits of 56 ± 10, 62 ± 10, and 63 ± 10 mL·kg, respectively ( < 0.05 for 4+Y vs. 4-Y and GE/EC). The mean differences between the estimated O deficits were -6 ± 5 mL·kg (4+Y vs. 4-Y, < 0.05), -7 ± 1 mL·kg (4+Y vs. GE/EC, < 0.05) and -1 ± 5 mL·kg (4-Y vs. GE/EC), with respective typical errors of 5.3, 1.9, and 6.0%. The mean difference between the O deficit estimated with GE/EC based on the average of four submaximal stages compared with the last stage was 1 ± 2 mL·kg, with a typical error of 3.2%. These findings demonstrate a disagreement in the O deficits estimated using current methods. In addition, the findings suggest that a valid estimate of the O deficit may be possible using data from only one submaximal stage in combination with the GE/EC method.
本研究旨在比较四种估算超最大运动期间无氧能量产生的方法。21名参加国家和/或国际级比赛的初级越野滑雪运动员在跑步机上进行上坡(7°)对角步(DS)轮滑测试。经过4分钟的热身,进行了一个4×4分钟的连续亚最大运动方案,随后进行600米计时赛(TT)。对于最大累积氧亏(MAOD)方法,利用[公式:见正文]氧速回归关系来估算计时赛期间的[公式:见正文]氧需求,包括(4 + Y,方法1)或排除(4 - Y,方法2)基线[公式:见正文]氧的固定Y轴截距。总效率(GE)方法(方法3)包括通过将功率输出除以亚最大总效率来计算计时赛期间的代谢率,然后将其转换为[公式:见正文]氧需求。还使用了一种基于亚最大能量消耗(EC,方法4)的替代方法来估算计时赛期间的[公式:见正文]氧需求。在亚最大阶段,总效率/能量消耗保持恒定,超最大计时赛在185±24秒内完成。总效率和能量消耗方法产生相同的[公式:见正文]氧需求和氧亏。与4 - Y和总效率/能量消耗方法相比,4 + Y方法的[公式:见正文]氧需求低约3%,相应的氧亏分别为56±10、62±10和63±10 mL·kg(4 + Y与4 - Y和总效率/能量消耗相比,P < 0.05)。估算的氧亏之间的平均差异为-6±5 mL·kg(4 + Y与4 - Y,P < 0.05)、-7±1 mL·kg(4 + Y与总效率/能量消耗,P < 0.05)和-1±5 mL·kg(4 - Y与总效率/能量消耗),各自的典型误差分别为5.3%、1.9%和6.0%。基于四个亚最大阶段的平均值与最后一个阶段相比,用总效率/能量消耗估算的氧亏之间的平均差异为1±2 mL·kg,典型误差为3.2%。这些发现表明,使用当前方法估算的氧亏存在差异。此外,研究结果表明,结合总效率/能量消耗方法,仅使用一个亚最大阶段的数据可能可以有效估算氧亏。