Suppr超能文献

基于图像的异质单细胞表型追踪

Image-Based Tracking of Heterogeneous Single-Cell Phenotypes.

作者信息

Patsch Katherin, Mumenthaler Shannon M, Ruderman Daniel

机构信息

Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA.

出版信息

Methods Mol Biol. 2018;1745:47-63. doi: 10.1007/978-1-4939-7680-5_3.

Abstract

Cells display broad heterogeneity across multiple phenotypic features, including motility, morphology, and cell signaling. Live-cell imaging techniques are beginning to capture the importance and interdependence of these phenomena. However, existing image analysis pipelines often fail to capture the intricate changes that occur in small subpopulations, either due to poor segmentation protocols or cell tracking errors. Here we report a pipeline designed to image and track single-cell dynamic phenotypes in heterogeneous cell populations. We provide step-by-step instructions for three phenotypically different cell lines across two time scales as well as recommendations for adaptation to custom data sets. Our protocols include steps for quality control that can be used to filter out erroneous tracks and improve assessment of heterogeneity. We demonstrate possible phenotypic readouts including motility, nuclear receptor translocation, and mitosis.

摘要

细胞在包括运动性、形态和细胞信号传导等多个表型特征上表现出广泛的异质性。活细胞成像技术开始捕捉到这些现象的重要性和相互依赖性。然而,由于分割协议不佳或细胞跟踪错误,现有的图像分析流程往往无法捕捉到小亚群中发生的复杂变化。在此,我们报告一种旨在对异质细胞群体中的单细胞动态表型进行成像和跟踪的流程。我们提供了跨两个时间尺度对三种表型不同的细胞系进行操作的分步说明,以及针对自定义数据集进行调整的建议。我们的方案包括质量控制步骤,可用于滤除错误轨迹并改进对异质性的评估。我们展示了可能的表型读数,包括运动性、核受体易位和有丝分裂。

相似文献

1
Image-Based Tracking of Heterogeneous Single-Cell Phenotypes.
Methods Mol Biol. 2018;1745:47-63. doi: 10.1007/978-1-4939-7680-5_3.
2
Single cell dynamic phenotyping.
Sci Rep. 2016 Oct 6;6:34785. doi: 10.1038/srep34785.
3
Mathematical imaging methods for mitosis analysis in live-cell phase contrast microscopy.
Methods. 2017 Feb 15;115:91-99. doi: 10.1016/j.ymeth.2017.02.001. Epub 2017 Feb 9.
4
TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis.
PLoS One. 2017 Jul 26;12(7):e0179752. doi: 10.1371/journal.pone.0179752. eCollection 2017.
6
DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning.
PLoS Comput Biol. 2020 Apr 13;16(4):e1007673. doi: 10.1371/journal.pcbi.1007673. eCollection 2020 Apr.
7
A novel framework for cellular tracking and mitosis detection in dense phase contrast microscopy images.
IEEE J Biomed Health Inform. 2013 May;17(3):642-53. doi: 10.1109/titb.2012.2228663.
9
A Cell Segmentation/Tracking Tool Based on Machine Learning.
Methods Mol Biol. 2019;2040:399-422. doi: 10.1007/978-1-4939-9686-5_19.
10
The CellPhe toolkit for cell phenotyping using time-lapse imaging and pattern recognition.
Nat Commun. 2023 Apr 3;14(1):1854. doi: 10.1038/s41467-023-37447-3.

本文引用的文献

2
Single cell dynamic phenotyping.
Sci Rep. 2016 Oct 6;6:34785. doi: 10.1038/srep34785.
5
Decoding information in cell shape.
Cell. 2013 Sep 12;154(6):1356-69. doi: 10.1016/j.cell.2013.08.026.
7
Encoding and decoding cellular information through signaling dynamics.
Cell. 2013 Feb 28;152(5):945-56. doi: 10.1016/j.cell.2013.02.005.
8
Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data.
Nat Methods. 2012 Sep;9(9):923-8. doi: 10.1038/nmeth.2138. Epub 2012 Aug 12.
9
Mismatch in mechanical and adhesive properties induces pulsating cancer cell migration in epithelial monolayer.
Biophys J. 2012 Jun 20;102(12):2731-41. doi: 10.1016/j.bpj.2012.05.005. Epub 2012 Jun 19.
10
p53 dynamics control cell fate.
Science. 2012 Jun 15;336(6087):1440-4. doi: 10.1126/science.1218351.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验