Patsch Katherin, Mumenthaler Shannon M, Ruderman Daniel
Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA.
Methods Mol Biol. 2018;1745:47-63. doi: 10.1007/978-1-4939-7680-5_3.
Cells display broad heterogeneity across multiple phenotypic features, including motility, morphology, and cell signaling. Live-cell imaging techniques are beginning to capture the importance and interdependence of these phenomena. However, existing image analysis pipelines often fail to capture the intricate changes that occur in small subpopulations, either due to poor segmentation protocols or cell tracking errors. Here we report a pipeline designed to image and track single-cell dynamic phenotypes in heterogeneous cell populations. We provide step-by-step instructions for three phenotypically different cell lines across two time scales as well as recommendations for adaptation to custom data sets. Our protocols include steps for quality control that can be used to filter out erroneous tracks and improve assessment of heterogeneity. We demonstrate possible phenotypic readouts including motility, nuclear receptor translocation, and mitosis.
细胞在包括运动性、形态和细胞信号传导等多个表型特征上表现出广泛的异质性。活细胞成像技术开始捕捉到这些现象的重要性和相互依赖性。然而,由于分割协议不佳或细胞跟踪错误,现有的图像分析流程往往无法捕捉到小亚群中发生的复杂变化。在此,我们报告一种旨在对异质细胞群体中的单细胞动态表型进行成像和跟踪的流程。我们提供了跨两个时间尺度对三种表型不同的细胞系进行操作的分步说明,以及针对自定义数据集进行调整的建议。我们的方案包括质量控制步骤,可用于滤除错误轨迹并改进对异质性的评估。我们展示了可能的表型读数,包括运动性、核受体易位和有丝分裂。