Suppr超能文献

脆性 X 综合征 Fmr1-KO 小鼠模型中海马区异常的θ和γ超同步会产生网络和尖峰时间紊乱。

Abnormal hippocampal theta and gamma hypersynchrony produces network and spike timing disturbances in the Fmr1-KO mouse model of Fragile X syndrome.

机构信息

Cognitive & Systems Neuroscience, Swammerdam Institute, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postal Box 22660, 1100 DD Amsterdam, The Netherlands.

Cognitive & Systems Neuroscience, Swammerdam Institute, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Radboud Universiteit Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.

出版信息

Neurobiol Dis. 2018 Jun;114:65-73. doi: 10.1016/j.nbd.2018.02.011. Epub 2018 Feb 24.

Abstract

Neuronal networks can synchronize their activity through excitatory and inhibitory connections, which is conducive to synaptic plasticity. This synchronization is reflected in rhythmic fluctuations of the extracellular field. In the hippocampus, theta and gamma band LFP oscillations are a hallmark of the processing of spatial information and memory. Fragile X syndrome (FXS) is an intellectual disability and the most common genetic cause of autism spectrum disorder (Belmonte and Bourgeron, 2006). Here, we investigated how neuronal network synchronization in the mouse hippocampus is compromised by the Fmr1 mutation that causes FXS (Santos et al., 2014), relating recently observed single-cell level impairments (Arbab et al., 2017) to neuronal network aberrations. We implanted tetrodes in hippocampus of freely moving Fmr1-KO and littermate wildtype (WT) mice (Mientjes et al., 2006), to record spike trains from multiple, isolated neurons as well as LFPs in a spatial exploration paradigm. Compared to wild type mice, Fmr1-KO mice displayed greater power of hippocampal theta oscillations, and higher coherence in the slow gamma band. Additionally, spike trains of Fmr1-KO interneurons show decreased spike-count correlations and they are hypersynchronized with theta and slow gamma oscillations. The hypersynchronization of Fmr1-KO oscillations and spike timing reflects functional deficits in local networks. This network hypersynchronization pathologically decreases the heterogeneity of spike-LFP phase coupling, compromising information processing within the hippocampal circuit. These findings may reflect a pathophysiological mechanism explaining cognitive impairments in FXS and autism, in which there is anomalous processing of social and environmental cues and associated deficits in memory and cognition.

摘要

神经网络可以通过兴奋性和抑制性连接来同步其活动,这有利于突触可塑性。这种同步反映在细胞外场的节律性波动中。在海马体中,θ 和γ 频段 LFPs 振荡是空间信息处理和记忆的标志。脆性 X 综合征(FXS)是一种智力残疾,也是自闭症谱系障碍(ASD)最常见的遗传原因(Belmonte 和 Bourgeron,2006)。在这里,我们研究了导致 FXS 的 Fmr1 突变如何损害小鼠海马体中的神经元网络同步(Santos 等人,2014),将最近观察到的单细胞水平损伤(Arbab 等人,2017)与神经元网络异常联系起来。我们在自由移动的 Fmr1-KO 和同窝野生型(WT)小鼠的海马体中植入四极管(Mientjes 等人,2006),以在空间探索范式中记录来自多个隔离神经元的尖峰序列和 LFPs。与野生型小鼠相比,Fmr1-KO 小鼠的海马体θ 振荡功率更大,慢γ 频段的相干性更高。此外,Fmr1-KO 中间神经元的尖峰序列显示出尖峰计数相关性降低,并且它们与θ 和慢γ 振荡高度同步。Fmr1-KO 振荡和尖峰时间的过度同步反映了局部网络的功能缺陷。这种网络过度同步病理性地降低了尖峰-LFP 相位耦合的异质性,损害了海马体回路内的信息处理。这些发现可能反映了一种病理生理学机制,解释了 FXS 和自闭症中的认知障碍,其中存在对社会和环境线索的异常处理以及与记忆和认知相关的缺陷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验