Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.
mBio. 2018 Feb 27;9(1):e00097-18. doi: 10.1128/mBio.00097-18.
Enteric pathogens with low infectious doses rely on the ability to orchestrate the expression of virulence and metabolism-associated genes in response to environmental cues for successful infection. Accordingly, the human pathogen enterohemorrhagic (EHEC) employs a complex multifaceted regulatory network to link the expression of type III secretion system (T3SS) components to nutrient availability. While phosphorylation of histidine and aspartate residues on two-component system response regulators is recognized as an integral part of bacterial signaling, the involvement of phosphotyrosine-mediated control is minimally explored in Gram-negative pathogens. Our recent phosphotyrosine profiling study of identified 342 phosphorylated proteins, indicating that phosphotyrosine modifications in bacteria are more prevalent than previously anticipated. The present study demonstrates that tyrosine phosphorylation of a metabolite-responsive LacI/GalR family regulator, Cra, negatively affects T3SS expression under glycolytic conditions that are typical for the colonic lumen environment where production of the T3SS is unnecessary. Our data suggest that Cra phosphorylation affects T3SS expression by modulating the expression of , which encodes the major activator of EHEC virulence gene expression. Phosphorylation of the Cra Y47 residue diminishes DNA binding to fine-tune the expression of virulence-associated genes, including those of the locus of enterocyte effacement pathogenicity island that encode the T3SS, and thereby negatively affects the formation of attaching and effacing lesions. Our data indicate that tyrosine phosphorylation provides an additional mechanism to control the DNA binding of Cra and other LacI/GalR family regulators, including LacI and PurR. This study describes an initial effort to unravel the role of global phosphotyrosine signaling in the control of EHEC virulence potential. Enterohemorrhagic (EHEC) causes outbreaks of hemorrhagic colitis and the potentially fatal hemolytic-uremic syndrome. Successful host colonization by EHEC relies on the ability to coordinate the expression of virulence factors in response to environmental cues. A complex network that integrates environmental signals at multiple regulatory levels tightly controls virulence gene expression. We demonstrate that EHEC utilizes a previously uncharacterized phosphotyrosine signaling pathway through Cra to fine-tune the expression of virulence-associated genes to effectively control T3SS production. This study demonstrates that tyrosine phosphorylation negatively affects the DNA-binding capacity of Cra, which affects the expression of genes related to virulence and metabolism. We demonstrate for the first time that phosphotyrosine-mediated control affects global transcription in EHEC. Our data provide insight into a hitherto unexplored regulatory level of the global network controlling EHEC virulence gene expression.
低感染剂量的肠病原体依赖于在环境线索的刺激下协调毒力和代谢相关基因表达的能力,以成功感染。因此,人类病原体肠出血性大肠杆菌(EHEC)利用复杂的多方面调控网络将 III 型分泌系统(T3SS)组件的表达与营养可用性联系起来。虽然磷酸化两个成分系统反应调节剂的组氨酸和天冬氨酸残基被认为是细菌信号传导的一个组成部分,但在革兰氏阴性病原体中,磷酸酪氨酸介导的控制的参与几乎没有被探索过。我们最近对 的磷酸酪氨酸分析研究确定了 342 个磷酸化蛋白,表明细菌中的磷酸酪氨酸修饰比以前预期的更为普遍。本研究表明,代谢物反应性 LacI/GalR 家族调节剂 Cra 的酪氨酸磷酸化在糖酵解条件下负调控 T3SS 的表达,而糖酵解条件是大肠腔环境的典型条件,在该环境中不需要 T3SS 的产生。我们的数据表明,Cra 磷酸化通过调节 的表达来影响 T3SS 的表达, 编码 EHEC 毒力基因表达的主要激活剂。Cra Y47 残基的磷酸化减少了 DNA 结合,从而精细调节了包括紧密连接上皮细胞 effacement 致病性岛基因座在内的毒力相关基因的表达,从而负调控附着和消除病变的形成。我们的数据表明,酪氨酸磷酸化提供了一种额外的机制来控制 Cra 和其他 LacI/GalR 家族调节剂(包括 LacI 和 PurR)的 DNA 结合。本研究描述了一项初步努力,以揭示全局磷酸酪氨酸信号在控制 EHEC 毒力潜力中的作用。肠出血性大肠杆菌(EHEC)引起出血性结肠炎和潜在致命性溶血性尿毒综合征的爆发。EHEC 成功定植宿主依赖于其协调毒力因子表达以响应环境线索的能力。一个整合了多个调节水平的环境信号的复杂网络,严格控制着毒力基因的表达。我们证明,EHEC 利用了一种以前未被描述的通过 Cra 的磷酸酪氨酸信号通路来微调与毒力相关的基因表达,以有效地控制 T3SS 的产生。本研究表明,酪氨酸磷酸化负调控 Cra 的 DNA 结合能力,从而影响与毒力和代谢相关的基因的表达。我们首次证明,磷酸酪氨酸介导的控制会影响 EHEC 的全局转录。我们的数据为控制 EHEC 毒力基因表达的全局网络的一个尚未探索的调控水平提供了深入了解。