Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 8 , 128 40 Prague 2 , Czech Republic.
Department of Chemistry , Masaryk University , Kotlářská 2 , 611 37 Brno , Czech Republic.
Inorg Chem. 2018 Mar 19;57(6):3061-3072. doi: 10.1021/acs.inorgchem.7b02929. Epub 2018 Feb 28.
Hnota derivatives are among the most studied macrocyclic ligands and are widely used for metal ion binding in biology and medicine. Despite more than 40 years of chemical research on Hnota, the comprehensive study of its solution chemistry has been overlooked. Thus, the coordination behavior of Hnota with several divalent metal ions was studied in detail with respect to its application as a chelator for copper radioisotopes in medical imaging and therapy. In the solid-state structure of the free ligand in zwitterionic form, one proton is bound in the macrocyclic cavity through a strong intramolecular hydrogen-bond system supporting the high basicity of the ring amine groups (log K = 13.17). The high stability of the [Cu(nota)] complex (log K = 23.33) results in quantitative complex formation, even at pH <1.5. The ligand is moderately selective for Cu(II) over other metal ions (e.g., log K(Zn) = 22.32 and log K(Ni) = 19.24). This ligand forms a more stable complex with Mg(II) than with Ca(II) and forms surprisingly stable complexes with alkali-metal ions (stability order Li(I) > Na(I) > K(I)). Thus, Hnota shows high selectivity for small metal ions. The [Cu(nota)] complex is hexacoordinated at neutral pH, and the equatorial NO interaction is strengthened by complex protonation. Detailed kinetic studies showed that the Cu(II) complex is formed quickly (millisecond time scale at c ≈ 0.1 mM) through an out-of-cage intermediate. Conversely, conductivity measurements revealed that the Zn(II) complex is formed much more slowly than the Cu(II) complex. The Cu(II) complex has medium kinetic inertness (τ 46 s; pH 0, 25 °C) and is less resistant to acid-assisted decomplexation than Cu(II) complexes with Hdota and Hteta. Surprisingly, [Cu(nota)] decomplexation is decelerated in the presence of Zn(II) ions due to the formation of a stable dinuclear complex. In conclusion, Hnota is a good carrier of copper radionuclides because the [Cu(nota)] complex is predominantly formed over complexes with common impurities in radiochemical formulations, Zn(II) and Ni(II), for thermodynamic and, primarily, for kinetic reasons. Furthermore, the in vivo stability of the [Cu(nota)] complex may be increased due to the formation of dinuclear complexes when it interacts with biometals.
HNOTA 衍生物是研究最多的大环配体之一,广泛用于生物学和医学中的金属离子结合。尽管对 HNOTA 进行了 40 多年的化学研究,但对其溶液化学的综合研究却被忽视了。因此,详细研究了 HNOTA 与几种二价金属离子的配位行为,以将其作为用于医学成像和治疗中铜放射性同位素螯合剂。在游离配体的两性离子形式的固态结构中,一个质子通过强分子内氢键系统结合在大环空腔中,支撑着环胺基团的高碱性(log K = 13.17)。[Cu(nota)]配合物的高稳定性(log K = 23.33)导致即使在 pH <1.5 时也能定量形成配合物。该配体对 Cu(II)相对于其他金属离子具有中等选择性(例如,log K(Zn)= 22.32 和 log K(Ni)= 19.24)。该配体与 Mg(II)形成的配合物比与 Ca(II)形成的配合物更稳定,并且与碱金属离子形成出人意料稳定的配合物(稳定性顺序为 Li(I)> Na(I)> K(I))。因此,HNOTA 对小金属离子具有高选择性。在中性 pH 下,[Cu(nota)]配合物为六配位,并且通过笼外中间体快速形成(c ≈ 0.1 mM 时为毫秒时间尺度)。相反,电导率测量表明,Zn(II)配合物的形成速度比 Cu(II)配合物慢得多。Cu(II)配合物具有中等动力学惰性(τ 46 s;pH 0,25°C),并且酸辅助解络合的抵抗力低于 Hdota 和 Hteta 的 Cu(II)配合物。令人惊讶的是,由于形成稳定的双核配合物,[Cu(nota)]的解络合在存在 Zn(II)离子时会减慢。总之,由于热力学和主要动力学原因,[Cu(nota)]配合物主要形成于放射性化学制剂中的常见杂质 Zn(II)和 Ni(II)形成的配合物之上,因此 HNOTA 是铜放射性核素的良好载体。此外,由于与生物金属相互作用时形成双核配合物,[Cu(nota)]配合物的体内稳定性可能会增加。