Suppr超能文献

用于预测主要术后并发症的联邦学习

Federated Learning for Predicting Major Postoperative Complications.

作者信息

Ren Yuanfang, Park Yonggi, Shickel Benjamin, Guan Ziyuan, Patel Ayush, Ma Yingbo, Hu Zhenhong, Balch Jeremy A, Loftus Tyler J, Rashidi Parisa, Ozrazgat-Baslanti Tezcan, Bihorac Azra

机构信息

From the Intelligent Clinical Care Center, University of Florida, Gainesville, FL.

Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, FL.

出版信息

Ann Surg Open. 2025 May 2;6(2):e573. doi: 10.1097/AS9.0000000000000573. eCollection 2025 Jun.

Abstract

OBJECTIVE

To develop a robust model to accurately predict the risk of postoperative complications using clinical data from multiple institutions while ensuring data privacy.

BACKGROUND

Building accurate, artificial intelligence models to predict postoperative complications relies on accessibility of large-scale and diverse datasets, often restricted by privacy concerns.

METHODS

This retrospective cohort study includes adult patients admitted to University of Florida Health (UFH) hospitals in Gainesville (GNV) (n = 79,850) and Jacksonville (JAX) (n = 28,636) for all inpatient major surgical procedures. We developed federated learning models to predict 9 major postoperative complications and compared them with both local models trained on a single site and central models trained on a pooled dataset from 2 hospitals.

RESULTS

Our best-federated learning models using preoperative features achieved the area under the receiver operating characteristics curve values with 95% confidence interval (CI) ranging from 0.80 (95% CI, 0.79-0.80) for wound complications to 0.90 (95% CI, 0.90-0.91) for prolonged intensive care unit (ICU) stay at UFH GNV. At UFH JAX, these values ranged from 0.71 (95% CI, 0.70-0.72) for wound complications to 0.90 (95% CI, 0.88-0.92) for in-hospital mortality. Federated learning models achieved comparable discrimination to central models for all outcomes, except prolonged ICU stay, where the performance of the federated learning model was slightly better at UFH GNV and slightly worse at UFH JAX. Our federated learning models obtained comparable performance to the best local models.

CONCLUSIONS

We show federated learning to be a useful tool to train robust postoperative outcome prediction models from large-scale data across 2 hospitals.

摘要

目的

开发一种强大的模型,利用来自多个机构的临床数据准确预测术后并发症风险,同时确保数据隐私。

背景

构建准确的人工智能模型来预测术后并发症依赖于大规模、多样化数据集的可获取性,而这往往受到隐私问题的限制。

方法

这项回顾性队列研究纳入了在盖恩斯维尔(GNV)的佛罗里达大学健康中心(UFH)医院(n = 79,850)和杰克逊维尔(JAX)的UFH医院(n = 28,636)接受所有住院大手术的成年患者。我们开发了联邦学习模型来预测9种主要术后并发症,并将其与在单个站点训练的局部模型以及在两家医院的合并数据集上训练的中心模型进行比较。

结果

我们使用术前特征的最佳联邦学习模型在接收者操作特征曲线下面积值及95%置信区间(CI)方面,在UFH GNV,从伤口并发症的0.80(95% CI,0.79 - 0.80)到延长重症监护病房(ICU)停留时间的0.90(95% CI,0.90 - 0.91)。在UFH JAX,这些值从伤口并发症的0.71(95% CI,0.70 - 0.72)到院内死亡率的0.90(95% CI,0.88 - 0.92)。除延长ICU停留时间外,联邦学习模型在所有结局方面与中心模型的区分度相当,在UFH GNV,联邦学习模型在此处的表现略好,而在UFH JAX则略差。我们的联邦学习模型获得了与最佳局部模型相当的性能。

结论

我们表明联邦学习是一种有用的工具,可用于从两家医院的大规模数据中训练强大的术后结局预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3254/12185077/d40fc290f450/as9-6-e573-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验