Cantini Marco, Gomide Karina, Moulisova Vladimira, González-García Cristina, Salmerón-Sánchez Manuel
Division of Biomedical Engineering School of Engineering University of Glasgow Oakfield Avenue G128LT Glasgow UK.
Adv Biosyst. 2017 Sep;1(9):1700047. doi: 10.1002/adbi.201700047. Epub 2017 Aug 10.
Surface functionalization strategies of synthetic materials for regenerative medicine applications comprise the development of microenvironments that recapitulate the physical and biochemical cues of physiological extracellular matrices. In this context, material-driven fibronectin (FN) nanonetworks obtained from the adsorption of the protein on poly(ethyl acrylate) provide a robust system to control cell behavior, particularly to enhance differentiation. This study aims at augmenting the complexity of these fibrillar matrices by introducing vitronectin, a lower-molecular-weight multifunctional glycoprotein and main adhesive component of serum. A cooperative effect during co-adsorption of the proteins is observed, as the addition of vitronectin leads to increased fibronectin adsorption, improved fibril formation, and enhanced vitronectin exposure. The mobility of the protein at the material interface increases, and this, in turn, facilitates the reorganization of the adsorbed FN by cells. Furthermore, the interplay between interface mobility and engagement of vitronectin receptors controls the level of cell fusion and the degree of cell differentiation. Ultimately, this work reveals that substrate-induced protein interfaces resulting from the cooperative adsorption of fibronectin and vitronectin fine-tune cell behavior, as vitronectin micromanages the local properties of the microenvironment and consequently short-term cell response to the protein interface and higher order cellular functions such as differentiation.
用于再生医学应用的合成材料的表面功能化策略包括开发能够重现生理细胞外基质物理和生化线索的微环境。在这种情况下,通过蛋白质在聚丙烯酸乙酯上的吸附获得的材料驱动的纤连蛋白(FN)纳米网络提供了一个强大的系统来控制细胞行为,特别是增强分化。本研究旨在通过引入玻连蛋白(一种分子量较低的多功能糖蛋白和血清的主要粘附成分)来增加这些纤维状基质的复杂性。观察到蛋白质共吸附过程中的协同效应,因为添加玻连蛋白会导致纤连蛋白吸附增加、纤维形成改善以及玻连蛋白暴露增强。蛋白质在材料界面的流动性增加,这反过来又促进了细胞对吸附的FN的重组。此外,界面流动性与玻连蛋白受体的结合之间的相互作用控制着细胞融合水平和细胞分化程度。最终,这项工作表明,由纤连蛋白和玻连蛋白的协同吸附产生的底物诱导蛋白质界面微调细胞行为,因为玻连蛋白微观管理微环境的局部特性,从而短期细胞对蛋白质界面的反应以及更高阶的细胞功能如分化。