Suppr超能文献

细胞在材料驱动的纤连蛋白微环境上的迁移。

Cell migration on material-driven fibronectin microenvironments.

作者信息

Grigoriou E, Cantini M, Dalby M J, Petersen A, Salmeron-Sanchez M

机构信息

Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK.

出版信息

Biomater Sci. 2017 Jun 27;5(7):1326-1333. doi: 10.1039/c7bm00333a.

Abstract

Cell migration is a fundamental process involved in a wide range of biological phenomena. However, how the underlying mechanisms that control migration are orchestrated is not fully understood. In this work, we explore the migratory characteristics of human fibroblasts using different organisations of fibronectin (FN) triggered by two chemically similar surfaces, poly(ethyl acrylate) (PEA) and poly(methyl acrylate) (PMA); cell migration is mediated via an intermediate layer of fibronectin (FN). FN is organised into nanonetworks upon simple adsorption on PEA whereas a globular conformation is observed on PMA. We studied cell speed over the course of 24 h and the morphology of focal adhesions in terms of area and length. Additionally, we analysed the amount of cell-secreted FN as well as FN remodelling. Velocity of human fibroblasts was found to exhibit a biphasic behaviour on PEA, whereas it remained fairly constant on PMA. FA analysis revealed more mature focal adhesions on PEA over time contrary to smaller FAs found on PMA. Finally, human fibroblasts seemed to remodel adsorbed FN more on PMA than on PEA. Overall, these results indicate that the cell-protein-material interface affects cell migratory behaviour. Analysis of FAs together with FN secretion and remodelling were associated with differences in cell velocity providing insights into the factors that can modulate cell motility.

摘要

细胞迁移是一个涉及广泛生物现象的基本过程。然而,控制迁移的潜在机制是如何协调的,目前尚未完全了解。在这项工作中,我们利用由两种化学性质相似的表面,即聚丙烯酸乙酯(PEA)和聚丙烯酸甲酯(PMA)引发的不同纤连蛋白(FN)组装形式,来探究人类成纤维细胞的迁移特性;细胞迁移是通过纤连蛋白(FN)的中间层介导的。FN在简单吸附于PEA时会组装成纳米网络,而在PMA上则呈现球状构象。我们研究了24小时内细胞的速度以及粘着斑在面积和长度方面的形态。此外,我们分析了细胞分泌的FN量以及FN的重塑情况。发现人类成纤维细胞在PEA上的速度呈现双相行为,而在PMA上则保持相当恒定。粘着斑分析显示,随着时间推移,PEA上的粘着斑比PMA上的粘着斑更成熟。最后,人类成纤维细胞似乎在PMA上比在PEA上更能重塑吸附的FN。总体而言,这些结果表明细胞 - 蛋白质 - 材料界面会影响细胞的迁移行为。对粘着斑的分析以及FN的分泌和重塑与细胞速度的差异相关,这为能够调节细胞运动性的因素提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b1/5858633/edbc8ba23397/c7bm00333a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验