Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States.
CEDAR, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, United States; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States.
J Control Release. 2018 Jul 28;282:76-89. doi: 10.1016/j.jconrel.2018.02.041. Epub 2018 Mar 1.
Despite recent advances in the supramolecular assembly of cell-penetrating peptide (CPP) nanostructures, the tuning of size, shape, morphology and packaging of drugs in these materials still remain unexplored. Herein, through sequential ligation of peptide building blocks, we create cell-penetrating self-assembling peptide nanomaterials (CSPNs) with the capability to translocate inside cells. We devised a triblock array of Tat [HIV-1 derived transactivator of transcription] based CPPs, conjugated to up to four Phenylalanine (Phe) residues through an amphiphilic linker, (RADA). We observed that the sequential addition of Phe leads to the transition of CSPN secondary structures from a random coil, to a distorted α-helix, a β-sheet, or a pure α-helix. This transition occurs due to formation of a heptad by virtue of even number of Phe. Atomic force microscopy revealed that CSPNs form distinct shapes reminiscent of a "drill-bit". CSPNs containing two, three or four Phe, self-assemble into "nanodrill-like structures" with a coarse-twisted, non-twisted or fine-twisted morphology, respectively. These nanodrills had a high capacity to encapsulate hydrophobic guest molecules. In particular, the coarse-twisted nanodrills demonstrate higher internalization and are able to deliver rapamycin, a hydrophobic small molecule that induced autophagy and are capable of in vivo delivery. Molecular dynamics studies provide microscopic insights into the structure of the nanodrills that can contribute to its morphology and ability to interact with cellular membrane. CSPNs represent a new modular drug delivery platform that can be programmed into exquisite structures through sequence-specific fine tuning of amino acids.
尽管最近在细胞穿透肽 (CPP) 纳米结构的超分子组装方面取得了进展,但这些材料中药物的大小、形状、形态和包装的调节仍然未知。在此,通过肽构建块的顺序连接,我们创建了具有穿透细胞能力的细胞穿透自组装肽纳米材料 (CSPN)。我们设计了一种基于 Tat [HIV-1 衍生的转录激活剂] 的 CPP 的三嵌段阵列,通过两亲性接头 (RADA) 将多达四个苯丙氨酸 (Phe) 残基连接到 CPP 上。我们观察到,通过添加 Phe 的顺序导致 CSPN 二级结构从无规卷曲转变为扭曲的α-螺旋、β-折叠或纯α-螺旋。这种转变是由于通过偶数个 Phe 形成七肽而发生的。原子力显微镜显示 CSPN 形成独特的形状,类似于“钻头”。含有两个、三个或四个 Phe 的 CSPN 自组装成“纳米钻状结构”,分别具有粗扭、非扭或细扭形态。这些纳米钻具有封装疏水分子的高能力。特别是,粗扭纳米钻表现出更高的内化能力,并能够递送雷帕霉素,这是一种诱导自噬的疏水分子,并且能够进行体内递送。分子动力学研究提供了纳米钻结构的微观见解,这有助于其形态和与细胞膜相互作用的能力。CSPN 代表了一种新的模块化药物递送平台,通过氨基酸的序列特异性精细调节,可以编程为精细结构。