Suppr超能文献

人类听觉皮层中声源高度的编码。

The Encoding of Sound Source Elevation in the Human Auditory Cortex.

机构信息

International Laboratory for Brain, Music and Sound Research, Université de Montréal, Department of Psychology, Outremont, Quebec H2V 4P3, Canada,

Centre for Research on Brain, Language and Music, McGill University, Montreal, Quebec H3A 0G4, Canada.

出版信息

J Neurosci. 2018 Mar 28;38(13):3252-3264. doi: 10.1523/JNEUROSCI.2530-17.2018. Epub 2018 Mar 5.

Abstract

Spatial hearing is a crucial capacity of the auditory system. While the encoding of horizontal sound direction has been extensively studied, very little is known about the representation of vertical sound direction in the auditory cortex. Using high-resolution fMRI, we measured voxelwise sound elevation tuning curves in human auditory cortex and show that sound elevation is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. We changed the ear shape of participants (male and female) with silicone molds for several days. This manipulation reduced or abolished the ability to discriminate sound elevation and flattened cortical tuning curves. Tuning curves recovered their original shape as participants adapted to the modified ears and regained elevation perception over time. These findings suggest that the elevation tuning observed in low-level auditory cortex did not arise from the physical features of the stimuli but is contingent on experience with spectral cues and covaries with the change in perception. One explanation for this observation may be that the tuning in low-level auditory cortex underlies the subjective perception of sound elevation. This study addresses two fundamental questions about the brain representation of sensory stimuli: how the vertical spatial axis of auditory space is represented in the auditory cortex and whether low-level sensory cortex represents physical stimulus features or subjective perceptual attributes. Using high-resolution fMRI, we show that vertical sound direction is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. In addition, we demonstrate that the shape of these tuning functions is contingent on experience with spectral cues and covaries with the change in perception, which may indicate that the tuning functions in low-level auditory cortex underlie the perceived elevation of a sound source.

摘要

空间听觉是听觉系统的一项关键能力。虽然水平声音方向的编码已经得到了广泛的研究,但垂直声音方向在听觉皮层中的表示方式却知之甚少。使用高分辨率 fMRI,我们测量了人类听觉皮层中体素水平的声音高度调谐曲线,并表明声音高度由较宽的调谐函数表示,优先选择较低的高度,以及较窄的次要调谐函数,优先选择个别高度方向。我们用硅树脂模具改变了参与者(男性和女性)的耳朵形状数天。这种操作降低或消除了辨别声音高度的能力,并使皮层调谐曲线变平。随着参与者适应修改后的耳朵,调谐曲线恢复到原来的形状,并随着时间的推移逐渐恢复高度感知。这些发现表明,在低级听觉皮层中观察到的高度调谐不是由刺激的物理特征引起的,而是取决于对频谱线索的经验,并与感知的变化相关。这种观察的一种解释可能是,低级听觉皮层中的调谐是主观声音高度感知的基础。这项研究解决了关于感觉刺激大脑表示的两个基本问题:听觉皮层中听觉空间的垂直空间轴是如何表示的,以及低级感觉皮层是否表示物理刺激特征或主观感知属性。使用高分辨率 fMRI,我们表明垂直声音方向由较宽的调谐函数表示,优先选择较低的高度,以及较窄的次要调谐函数,优先选择个别高度方向。此外,我们证明了这些调谐函数的形状取决于对频谱线索的经验,并与感知的变化相关,这可能表明低级听觉皮层中的调谐函数是声源感知高度的基础。

相似文献

1
The Encoding of Sound Source Elevation in the Human Auditory Cortex.
J Neurosci. 2018 Mar 28;38(13):3252-3264. doi: 10.1523/JNEUROSCI.2530-17.2018. Epub 2018 Mar 5.
2
Sensitivity to sound-source elevation in nontonotopic auditory cortex.
J Neurophysiol. 1998 Aug;80(2):882-94. doi: 10.1152/jn.1998.80.2.882.
3
Active Sound Localization Sharpens Spatial Tuning in Human Primary Auditory Cortex.
J Neurosci. 2018 Oct 3;38(40):8574-8587. doi: 10.1523/JNEUROSCI.0587-18.2018. Epub 2018 Aug 20.
4
Adaptation to shifted interaural time differences changes encoding of sound location in human auditory cortex.
Neuroimage. 2015 Sep;118:26-38. doi: 10.1016/j.neuroimage.2015.06.006. Epub 2015 Jun 6.
5
Evidence for cue-independent spatial representation in the human auditory cortex during active listening.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7602-E7611. doi: 10.1073/pnas.1707522114. Epub 2017 Aug 21.
7
Physiological and behavioral studies of spatial coding in the auditory cortex.
Hear Res. 2007 Jul;229(1-2):106-15. doi: 10.1016/j.heares.2007.01.001. Epub 2007 Jan 17.
8
A common cortical substrate activated by horizontal and vertical sound movement in the human brain.
Curr Biol. 2002 Sep 17;12(18):1584-90. doi: 10.1016/s0960-9822(02)01143-0.
9
Human cortical representation of virtual auditory space: differences between sound azimuth and elevation.
Eur J Neurosci. 2002 Dec;16(11):2207-13. doi: 10.1046/j.1460-9568.2002.02276.x.
10
Evaluating the Columnar Stability of Acoustic Processing in the Human Auditory Cortex.
J Neurosci. 2018 Sep 5;38(36):7822-7832. doi: 10.1523/JNEUROSCI.3576-17.2018. Epub 2018 Aug 1.

引用本文的文献

1
Extrusion bioprinting: meeting the promise of human tissue biofabrication?
Prog Biomed Eng (Bristol). 2025 Mar 11;7(2):023001. doi: 10.1088/2516-1091/adb254.
2
Auditory localization: a comprehensive practical review.
Front Psychol. 2024 Jul 10;15:1408073. doi: 10.3389/fpsyg.2024.1408073. eCollection 2024.
3
Time scales of adaptation to context in horizontal sound localization.
J Acoust Soc Am. 2023 Oct 1;154(4):2191-2202. doi: 10.1121/10.0021304.
4
Age and Auditory Spatial Perception in Humans: Review of Behavioral Findings and Suggestions for Future Research.
Front Psychol. 2022 Feb 16;13:831670. doi: 10.3389/fpsyg.2022.831670. eCollection 2022.
5
Masking effects on subjective annoyance to aircraft flyover noise: An fMRI study.
Hum Brain Mapp. 2020 Aug 15;41(12):3284-3294. doi: 10.1002/hbm.25016. Epub 2020 May 7.
6
Fronto-Temporal Coupling Dynamics During Spontaneous Activity and Auditory Processing in the Bat .
Front Syst Neurosci. 2020 Mar 20;14:14. doi: 10.3389/fnsys.2020.00014. eCollection 2020.
7
Recent advances in understanding the auditory cortex.
F1000Res. 2018 Sep 26;7. doi: 10.12688/f1000research.15580.1. eCollection 2018.

本文引用的文献

1
Egocentric and allocentric representations in auditory cortex.
PLoS Biol. 2017 Jun 15;15(6):e2001878. doi: 10.1371/journal.pbio.2001878. eCollection 2017 Jun.
3
Tuning to Binaural Cues in Human Auditory Cortex.
J Assoc Res Otolaryngol. 2016 Feb;17(1):37-53. doi: 10.1007/s10162-015-0546-4.
4
Adaptation to shifted interaural time differences changes encoding of sound location in human auditory cortex.
Neuroimage. 2015 Sep;118:26-38. doi: 10.1016/j.neuroimage.2015.06.006. Epub 2015 Jun 6.
5
Neural representation of three-dimensional acoustic space in the human temporal lobe.
Front Hum Neurosci. 2015 Apr 16;9:203. doi: 10.3389/fnhum.2015.00203. eCollection 2015.
6
The neural representation of interaural time differences in gerbils is transformed from midbrain to cortex.
J Neurosci. 2014 Dec 10;34(50):16796-808. doi: 10.1523/JNEUROSCI.2432-14.2014.
7
Accommodating to new ears: the effects of sensory and sensory-motor feedback.
J Acoust Soc Am. 2014 Apr;135(4):2002-11. doi: 10.1121/1.4868369.
8
The plastic ear and perceptual relearning in auditory spatial perception.
Front Neurosci. 2014 Aug 6;8:237. doi: 10.3389/fnins.2014.00237. eCollection 2014.
10
Natural auditory scene statistics shapes human spatial hearing.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):6104-8. doi: 10.1073/pnas.1322705111. Epub 2014 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验