Suppr超能文献

使用SINCERA流程进行单细胞转录组分析。

Single-Cell Transcriptome Analysis Using SINCERA Pipeline.

作者信息

Guo Minzhe, Xu Yan

机构信息

The Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

出版信息

Methods Mol Biol. 2018;1751:209-222. doi: 10.1007/978-1-4939-7710-9_15.

Abstract

Genome-scale single-cell biology has recently emerged as a powerful technology with important implications for both basic and medical research. There are urgent needs for the development of computational methods or analytic pipelines to facilitate large amounts of single-cell RNA-Seq data analysis. Here, we present a detailed protocol for SINCERA (SINgle CEll RNA-Seq profiling Analysis), a generally applicable analytic pipeline for processing single-cell data from a whole organ or sorted cells. The pipeline supports the analysis for the identification of major cell types, cell type-specific gene signatures, and driving forces of given cell types. In this chapter, we provide step-by-step instructions for the functions and features of SINCERA together with application examples to provide a practical guide for the research community. SINCERA is implemented in R, licensed under the GNU General Public License v3, and freely available from CCHMC PBGE website, https://research.cchmc.org/pbge/sincera.html .

摘要

基因组规模的单细胞生物学最近已成为一项强大的技术,对基础研究和医学研究都具有重要意义。迫切需要开发计算方法或分析流程,以促进对大量单细胞RNA测序数据分析。在这里,我们展示了SINCERA(单细胞RNA测序分析)的详细方案,这是一种普遍适用的分析流程,用于处理来自整个器官或分选细胞的单细胞数据。该流程支持对主要细胞类型、细胞类型特异性基因特征以及特定细胞类型的驱动因素进行识别分析。在本章中,我们提供了SINCERA功能和特性的逐步说明以及应用示例,为研究界提供实用指南。SINCERA是用R语言实现的,遵循GNU通用公共许可证v3许可,可从辛辛那提儿童医院医学中心(CCHMC)的PBGE网站(https://research.cchmc.org/pbge/sincera.html)免费获取。

相似文献

2
SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis.SINCERA:一种用于单细胞RNA测序分析的流程
PLoS Comput Biol. 2015 Nov 24;11(11):e1004575. doi: 10.1371/journal.pcbi.1004575. eCollection 2015 Nov.
9
Data Analysis in Single-Cell Transcriptome Sequencing.单细胞转录组测序中的数据分析
Methods Mol Biol. 2018;1754:311-326. doi: 10.1007/978-1-4939-7717-8_18.

引用本文的文献

6
Prediction of Anticancer Peptides Using a Low-Dimensional Feature Model.使用低维特征模型预测抗癌肽
Front Bioeng Biotechnol. 2020 Aug 12;8:892. doi: 10.3389/fbioe.2020.00892. eCollection 2020.

本文引用的文献

5
SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis.SINCERA:一种用于单细胞RNA测序分析的流程
PLoS Comput Biol. 2015 Nov 24;11(11):e1004575. doi: 10.1371/journal.pcbi.1004575. eCollection 2015 Nov.
7
Single-Cell Analysis in Cancer Genomics.癌症基因组学中的单细胞分析
Trends Genet. 2015 Oct;31(10):576-586. doi: 10.1016/j.tig.2015.07.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验