Waghmare Pankajkumar R, Watharkar Anuprita D, Jeon Byong-Hun, Govindwar Sanjay P
1Department of Biochemistry, Shivaji University, Kolhapur, 416004 India.
2Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763 South Korea.
3 Biotech. 2018 Mar;8(3):158. doi: 10.1007/s13205-018-1188-0. Epub 2018 Mar 2.
In this study, we have described three steps to produce ethanol from , which was derived after the treatment of textile wastewater. (a) Production of biomass: biomass samples collected from a hydroponic phytoreactor treating dye textile effluents and augmented with Ca-alginate immobilized growth-promoting bacterium, strain PgJ (consortium phytoreactor), and waste sorghum husks were collected and dried. Compositional analysis of biomass (consortium phytoreactor) showed that the concentration of cellulose, hemicelluloses and lignin was 42, 30 and 17%, respectively, whereas the biomass samples without the growth-promoting bacterium (normal phytoreactor) was slightly lower, 40, 29 and 16%, respectively. (b) Hydrolysate (sugar) production: a crude sample of the fungus, containing hydrolytic enzymes such as endoglucanase (53.25 U/ml), exoglucanase (8.38 U/ml), glucoamylase (115.04 U/ml), xylanase (83.88 U/ml), LiP (0.972 U/ml) and MnP (0.459 U/ml) was obtained, and added to consortium, normal and control phytoreactor derived biomass supplemented with Tween-20 (0.2% v/v). The hydrolysate of biomass from consortium phytoreactor produced maximum reducing sugar (0.93 g/l) than hydrolysates of normal phytoreactor biomass (0.82 g/l) and control phytoreactor biomass (0.79 g/l). FTIR and XRD analysis confirmed structural changes in treated biomass. (c) Ethanol production: the bioethanol produced from enzymatic hydrolysates of waste biomass of consortium and normal phytoreactor using (KCTC 7296) was 42.2 and 39.4 g/l, respectively, while control phytoreactor biomass hydrolysate showed only 25.5 g/l. Thus, the amalgamation of phytoremediation and bioethanol production can be the truly environment-friendly way to eliminate the problem of textile dye along with bioenergy generation.
在本研究中,我们描述了从经纺织废水处理后得到的[具体物质未提及]生产乙醇的三个步骤。(a)生物质的生产:从处理染料纺织废水的水培植物反应器中收集生物质样本,并添加经海藻酸钙固定化的促生长细菌PgJ菌株(联合植物反应器),同时收集废弃高粱壳并进行干燥。对生物质(联合植物反应器)的成分分析表明,纤维素、半纤维素和木质素的浓度分别为42%、30%和17%,而没有促生长细菌的生物质样本(普通植物反应器)的浓度略低,分别为40%、29%和16%。(b)水解产物(糖)的生产:获得一种含有内切葡聚糖酶(53.25 U/ml)、外切葡聚糖酶(8.38 U/ml)、葡糖淀粉酶(115.04 U/ml)、木聚糖酶(83.88 U/ml)、木质素过氧化物酶(0.972 U/ml)和锰过氧化物酶(0.459 U/ml)等水解酶的真菌粗样品,并将其添加到联合、普通和对照植物反应器衍生的生物质中,这些生物质补充了吐温-20(0.2% v/v)。联合植物反应器生物质的水解产物产生的还原糖最多(0.93 g/l),高于普通植物反应器生物质水解产物(0.82 g/l)和对照植物反应器生物质水解产物(0.79 g/l)。傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)分析证实了处理后生物质的结构变化。(c)乙醇生产:使用[具体菌株未提及](KCTC 7296)从联合和普通植物反应器的废弃生物质酶解产物中生产的生物乙醇分别为42.2 g/l和39.4 g/l,而对照植物反应器生物质水解产物仅为25.5 g/l。因此,植物修复与生物乙醇生产的结合可能是消除纺织染料问题并同时产生生物能源的真正环境友好型方法。