School of Biomedical Engineering and Guangdong Provincal Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, China.
Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1023 Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, China.
Eur Radiol. 2018 Aug;28(8):3245-3254. doi: 10.1007/s00330-018-5343-0. Epub 2018 Mar 8.
To investigate the impact of parameter settings as used for the generation of radiomics features on their robustness and disease differentiation (nasopharyngeal carcinoma (NPC) versus chronic nasopharyngitis (CN) in FDG PET/CT imaging).
We studied 106 patients (69/37 NPC/CN, pathology confirmed), and extracted 57 radiomics features under different parameter settings. Robustness was assessed by the intra-class correlation coefficient (ICC). Logistic regression with leave-one-out cross validation was used to generate classification probabilities, and diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC).
Varying averaging strategies and symmetry, 4/26 GLCM features showed poor range of pairwise ICCs of 0.02-0.98, while depicting good AUCs of 0.82-0.91. Varying distances, 5/26 GLCM features showed ICCs of 0.82-0.99 while corresponding AUCs were 0.52-0.91. 6/13 GLRLM features showed both high AUC (0.81-0.89) and high ICC (0.85-0.99) regarding to averaging strategies. 7/13 GLSZM features showed AUCs of 0.81-0.90 while having ICCs of 0.01-0.99 under different neighbourhoods. 2/5 NGTDM features showed AUCs of 0.81-0.85 while having ICCs of 0.19-0.89 for different window sizes. Differentiating a subset of NPC (stages I-II) form CN, both SumEntropy and SZLGE achieved significantly higher AUCs than metabolically active tumour volume (AUC: 0.91 vs. 0.72, p<0.01).
Radiomics features depicting poor absolute-scale robustness regarding to parameter settings can still lead to good diagnostic performance. As such, robustness of radiomics features should not be overemphasized for removal of features towards assessment of clinical tasks. For differentiating NPC from CN, some radiomics features (e.g. SumEntropy, SZLGE, LGZE) outperformed conventional metrics.
• Poor robustness did not necessarily translate into poor differentiation performance. • Absolute-scale robustness of radiomics features should not be overemphasized. • Radiomics features SumEntropy, SZLGE and LGZE outperformed conventional metrics.
研究生成放射组学特征时参数设置的影响,以探究其对稳健性和疾病分化(氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描成像中的鼻咽癌(NPC)与慢性鼻咽炎(CN))的影响。
我们研究了 106 名患者(69 名 NPC/37 名 CN,经病理证实),并在不同参数设置下提取了 57 个放射组学特征。采用组内相关系数(ICC)评估稳健性。采用留一交叉验证的逻辑回归生成分类概率,并通过接收者操作特征曲线下的面积(AUC)评估诊断性能。
改变平均策略和对称性时,4/26 GLCM 特征的成对 ICC 范围为 0.02-0.98,表现出良好的 AUC(0.82-0.91)。改变距离时,5/26 GLCM 特征的 ICC 为 0.82-0.99,而对应的 AUC 为 0.52-0.91。6/13 GLRLM 特征在平均策略方面均表现出高 AUC(0.81-0.89)和高 ICC(0.85-0.99)。7/13 GLSZM 特征在不同邻域下具有 AUC(0.81-0.90)和 ICC(0.01-0.99)。2/5 NGTDM 特征在不同窗口尺寸下具有 AUC(0.81-0.85)和 ICC(0.19-0.89)。区分 NPC(I-II 期)的亚组与 CN 时,信息熵和大小区域灰度共生矩阵熵特征的 AUC 显著高于代谢活跃肿瘤体积(AUC:0.91 比 0.72,p<0.01)。
尽管在参数设置方面,描绘出较差绝对尺度稳健性的放射组学特征仍能导致良好的诊断性能,但在评估临床任务时,不应过分强调放射组学特征的稳健性。在区分 NPC 与 CN 时,一些放射组学特征(如信息熵、大小区域灰度共生矩阵熵和灰度游程长度矩阵熵)优于传统指标。
较差的稳健性不一定转化为较差的分化性能。
放射组学特征的绝对尺度稳健性不应过分强调。
信息熵、大小区域灰度共生矩阵熵和灰度游程长度矩阵熵特征优于传统指标。