Department of Biology, McMaster University , Hamilton, Ontario , Canada.
Physiol Genomics. 2018 Apr 1;50(4):255-262. doi: 10.1152/physiolgenomics.00142.2017. Epub 2018 Mar 9.
Mammalian carotid bodies (CB) are chemosensory organs that mediate compensatory cardiorespiratory reflexes in response to low blood PO (hypoxemia) and elevated CO/H (acid hypercapnia). The chemoreceptors are glomus or type I cells that occur in clusters enveloped by neighboring glial-like type II cells. During chemoexcitation type I cells depolarize, leading to Ca-dependent release of several neurotransmitters, some excitatory and others inhibitory, that help shape the afferent carotid sinus nerve (CSN) discharge. Among the predominantly excitatory neurotransmitters are the purines ATP and adenosine, whereas dopamine (DA) is inhibitory in most species. There is a consensus that ATP and adenosine, acting via postsynaptic ionotropic P2X2/3 receptors and pre- and/or postsynaptic A2 receptors respectively, are major contributors to the increased CSN discharge during chemoexcitation. However, it has been proposed that the CB sensory output is also tuned by paracrine signaling pathways, involving glial-like type II cells. Indeed, type II cells express functional receptors for several excitatory neurochemicals released by type I cells including ATP, 5-HT, ACh, angiotensin II, and endothelin-1. Stimulation of the corresponding G protein-coupled receptors increases intracellular Ca, leading to the further release of ATP through pannexin-1 channels. Recent evidence suggests that other CB neurochemicals, e.g., histamine and DA, may actually inhibit Ca signaling in subpopulations of type II cells. Here, we review evidence supporting neurotransmitter-mediated crosstalk between type I and type II cells of the rat CB. We also consider the potential contribution of paracrine signaling and purinergic catabolic pathways to the integrated sensory output of the CB during chemotransduction.
哺乳动物颈动脉体(CB)是化学感受器器官,可介导对低血氧(低氧血症)和高 CO/H(酸高碳酸血症)的补偿性心肺反射。化学感受器是球体型或 I 型细胞,它们成群出现,被相邻的神经胶质样 II 型细胞包围。在化学兴奋过程中,I 型细胞去极化,导致 Ca 依赖性释放几种神经递质,有些是兴奋性的,有些是抑制性的,有助于形成传入颈动脉窦神经(CSN)放电。在主要的兴奋性神经递质中,有嘌呤核苷酸 ATP 和腺苷,而多巴胺(DA)在大多数物种中是抑制性的。人们普遍认为,ATP 和腺苷通过突触后离子型 P2X2/3 受体和前突触和/或后突触 A2 受体分别作用,是化学兴奋期间 CSN 放电增加的主要贡献者。然而,有人提出,CB 感觉输出也受到旁分泌信号通路的调节,涉及神经胶质样 II 型细胞。事实上,II 型细胞表达 I 型细胞释放的几种兴奋性神经化学物质的功能性受体,包括 ATP、5-HT、ACh、血管紧张素 II 和内皮素-1。相应的 G 蛋白偶联受体的刺激增加细胞内 Ca,导致通过连接蛋白-1 通道进一步释放 ATP。最近的证据表明,其他 CB 神经化学物质,例如组胺和 DA,实际上可能抑制 II 型细胞亚群中的 Ca 信号。在这里,我们回顾了支持大鼠 CB 的 I 型和 II 型细胞之间神经递质介导的串扰的证据。我们还考虑了旁分泌信号和嘌呤能分解代谢途径对化学转导过程中 CB 综合感觉输出的潜在贡献。