Suppr超能文献

前哨淋巴结活检术中应用吲哚菁绿对宫颈癌的疗效评估。

The efficacy of sentinel lymph node mapping with indocyanine green in cervical cancer.

机构信息

Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.

出版信息

World J Surg Oncol. 2018 Mar 9;16(1):52. doi: 10.1186/s12957-018-1341-6.

Abstract

BACKGROUND

Lymph node metastasis is a significant predictive factor for disease recurrence and survival in cervical cancer patients. Given the importance of lymph node metastasis, it is imperative that patients harboring metastasis are identified and can undergo appropriate treatment. Sentinel lymph node (SLN) mapping has drawn attention as a lymph node mapping technique. We evaluated the feasibility and efficacy of (SLN) mapping using indocyanine green (ICG) in cervical cancer.

METHODS

We performed a single-center, retrospective study of 103 surgically treated cervical cancer patients who underwent SLN mapping. After using ICG to detect SLN during surgery, we removed the SLNs followed by laparoscopic or robotic-assisted radical surgery and bilateral pelvic lymphadenectomy.

RESULTS

Stage IB1 was the most common (61.17%). At least one SLN was detected in all cases. Eighty-eight patients (85.44%) had bilateral pelvic SLNs. The mean number of SLN per patient was 2.34. The side-specific sensitivity was 71.43%, the specificity was 100%, the negative predictive value (NPV) was 93.98%, and the false negative rate (FNR) was 28.57%. In cases of tumors smaller than 2 cm with negative lymph node metastasis on imaging, the study revealed a side-specific sensitivity of 100%, a specificity of 100%, a NPV of 100%, and a FNR of 0%. Large tumor size (≥ 4 cm), a previous history of a loop electrosurgical excision procedure (LEEP), depth of invasion (≥ 50%), the microscopic parametrial (PM) invasion, and vaginal extension were significantly associated with the false-negative detection of SLN. Moreover, the microscopic PM invasion was the only risk factor of the false-negative detection of SLN in multivariate analysis.

CONCLUSION

SLN mapping with ICG in cervical cancer is feasible and has high detection rate. The sensitivity of 100% was high enough to perform SLN biopsy alone in an early stage in which the tumor is less than 2 cm, with no lymphadenopathy on image examination. However, for large or invasive tumors, we would have to be cautious about performing SLN biopsy alone.

TRIAL REGISTRATION

Retrospectively registered 2017-0600.

摘要

背景

淋巴结转移是宫颈癌患者疾病复发和生存的重要预测因素。鉴于淋巴结转移的重要性,必须识别出存在转移的患者,并对其进行适当的治疗。前哨淋巴结(SLN)绘图作为一种淋巴结绘图技术引起了关注。我们评估了使用吲哚菁绿(ICG)进行宫颈癌 SLN 绘图的可行性和疗效。

方法

我们对 103 例接受 SLN 绘图的手术治疗宫颈癌患者进行了单中心回顾性研究。手术中使用 ICG 检测 SLN 后,我们切除 SLN,然后进行腹腔镜或机器人辅助根治性手术和双侧盆腔淋巴结清扫术。

结果

IB1 期最常见(61.17%)。所有病例均至少检测到一个 SLN。88 例患者(85.44%)有双侧盆腔 SLN。每位患者的平均 SLN 数量为 2.34。侧特异性灵敏度为 71.43%,特异性为 100%,阴性预测值(NPV)为 93.98%,假阴性率(FNR)为 28.57%。在肿瘤直径小于 2cm 且影像学检查未见淋巴结转移的情况下,研究显示侧特异性灵敏度为 100%,特异性为 100%,NPV 为 100%,FNR 为 0%。肿瘤较大(≥4cm)、有环电切术(LEEP)病史、浸润深度(≥50%)、微观宫旁浸润和阴道延伸与 SLN 假阴性检测显著相关。此外,微观宫旁浸润是多变量分析中 SLN 假阴性检测的唯一危险因素。

结论

宫颈癌中使用 ICG 的 SLN 绘图是可行的,具有较高的检出率。在肿瘤直径小于 2cm 且影像学检查未见淋巴结肿大的早期阶段,灵敏度为 100%,足以单独进行 SLN 活检。然而,对于大肿瘤或侵袭性肿瘤,我们必须谨慎单独进行 SLN 活检。

试验注册

2017 年 0600 号回顾性注册。

相似文献

1
The efficacy of sentinel lymph node mapping with indocyanine green in cervical cancer.
World J Surg Oncol. 2018 Mar 9;16(1):52. doi: 10.1186/s12957-018-1341-6.
2
Sensitivity and negative predictive value for sentinel lymph node biopsy in women with early-stage cervical cancer.
Gynecol Oncol. 2017 Apr;145(1):96-101. doi: 10.1016/j.ygyno.2017.02.005. Epub 2017 Feb 8.
3
Sentinel lymph node mapping with indocyanine green in cervical cancer patients undergoing open radical hysterectomy: a single-institution series.
J Cancer Res Clin Oncol. 2021 Mar;147(3):649-659. doi: 10.1007/s00432-020-03393-6. Epub 2020 Sep 30.
9
Indocyanine Green versus Radiotracer with or without Blue Dye for Sentinel Lymph Node Mapping in Stage >IB1 Cervical Cancer (>2 cm).
J Minim Invasive Gynecol. 2017 Sep-Oct;24(6):954-959. doi: 10.1016/j.jmig.2017.05.011. Epub 2017 May 29.

引用本文的文献

2
Impact of Indocyanine Green Dose on Sentinel Lymph Node Mapping in Cervical Cancer: A Systematic Review.
Cancers (Basel). 2024 Sep 8;16(17):3107. doi: 10.3390/cancers16173107.
3
The role of minimally invasive surgery in gynaecological cancer: an overview of current trends.
Facts Views Vis Obgyn. 2024 Mar;16(1):23-33. doi: 10.52054/FVVO.16.1.005.
4
Feasibility of Sentinel Lymph Node Mapping With Carbon Nanoparticles in Cervical Cancer: A Retrospective Study.
Cancer Control. 2023 Jan-Dec;30:10732748231195716. doi: 10.1177/10732748231195716.
5
8
Sentinel node navigation surgery in cervical cancer: a systematic review and metaanalysis.
Int J Clin Oncol. 2022 Aug;27(8):1247-1255. doi: 10.1007/s10147-022-02178-w. Epub 2022 May 25.
10
A Review of Nuclear Medicine Approaches in the Diagnosis and the Treatment of Gynecological Malignancies.
Cancers (Basel). 2022 Mar 31;14(7):1779. doi: 10.3390/cancers14071779.

本文引用的文献

1
Sensitivity and negative predictive value for sentinel lymph node biopsy in women with early-stage cervical cancer.
Gynecol Oncol. 2017 Apr;145(1):96-101. doi: 10.1016/j.ygyno.2017.02.005. Epub 2017 Feb 8.
2
Sentinel lymph node detection rates using indocyanine green in women with early-stage cervical cancer.
Gynecol Oncol. 2016 Nov;143(2):302-306. doi: 10.1016/j.ygyno.2016.08.236. Epub 2016 Aug 12.
4
The sentinel node procedure in early stage cervical cancer, taking the next step; a diagnostic review.
Gynecol Oncol. 2015 Dec;139(3):559-67. doi: 10.1016/j.ygyno.2015.09.076. Epub 2015 Sep 28.
5
Location of Sentinel Lymph Node in Cervical Carcinoma and Factors Associated With Unilateral Detection.
Int J Gynecol Cancer. 2015 Nov;25(9):1663-8. doi: 10.1097/IGC.0000000000000539.
7
Cancer statistics, 2015.
CA Cancer J Clin. 2015 Jan-Feb;65(1):5-29. doi: 10.3322/caac.21254. Epub 2015 Jan 5.
10
Postoperative surgical complications of lymphadenohysterocolpectomy.
J Med Life. 2014 Mar 15;7(1):60-6. Epub 2014 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验