Suppr超能文献

人工智能在脑胶质瘤诊断、分类和临床管理中的新作用。

Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma.

机构信息

Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China.

Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China.

出版信息

Semin Cancer Biol. 2023 Jun;91:110-123. doi: 10.1016/j.semcancer.2023.03.006. Epub 2023 Mar 11.

Abstract

Glioma represents a dominant primary intracranial malignancy in the central nervous system. Artificial intelligence that mainly includes machine learning, and deep learning computational approaches, presents a unique opportunity to enhance clinical management of glioma through improving tumor segmentation, diagnosis, differentiation, grading, treatment, prediction of clinical outcomes (prognosis, and recurrence), molecular features, clinical classification, characterization of the tumor microenvironment, and drug discovery. A growing body of recent studies apply artificial intelligence-based models to disparate data sources of glioma, covering imaging modalities, digital pathology, high-throughput multi-omics data (especially emerging single-cell RNA sequencing and spatial transcriptome), etc. While these early findings are promising, future studies are required to normalize artificial intelligence-based models to improve the generalizability and interpretability of the results. Despite prominent issues, targeted clinical application of artificial intelligence approaches in glioma will facilitate the development of precision medicine of this field. If these challenges can be overcome, artificial intelligence has the potential to profoundly change the way patients with or at risk of glioma are provided with more rational care.

摘要

脑胶质瘤是中枢神经系统中主要的原发性颅内恶性肿瘤。人工智能主要包括机器学习和深度学习计算方法,为通过改善肿瘤分割、诊断、分化、分级、治疗、预测临床结局(预后和复发)、分子特征、临床分类、肿瘤微环境特征以及药物发现来增强脑胶质瘤的临床管理提供了独特的机会。越来越多的最近研究将基于人工智能的模型应用于脑胶质瘤的不同数据源,包括成像方式、数字病理学、高通量多组学数据(特别是新兴的单细胞 RNA 测序和空间转录组)等。虽然这些早期发现很有希望,但需要进一步的研究来使基于人工智能的模型标准化,以提高结果的通用性和可解释性。尽管存在突出问题,但人工智能方法在脑胶质瘤中的靶向临床应用将促进该领域精准医学的发展。如果这些挑战能够得到克服,人工智能有可能彻底改变提供给患有或有脑胶质瘤风险的患者的更合理的治疗方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验