Suppr超能文献

神经再关联学习。

Learning by neural reassociation.

机构信息

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.

Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Nat Neurosci. 2018 Apr;21(4):607-616. doi: 10.1038/s41593-018-0095-3. Epub 2018 Mar 12.

Abstract

Behavior is driven by coordinated activity across a population of neurons. Learning requires the brain to change the neural population activity produced to achieve a given behavioral goal. How does population activity reorganize during learning? We studied intracortical population activity in the primary motor cortex of rhesus macaques during short-term learning in a brain-computer interface (BCI) task. In a BCI, the mapping between neural activity and behavior is exactly known, enabling us to rigorously define hypotheses about neural reorganization during learning. We found that changes in population activity followed a suboptimal neural strategy of reassociation: animals relied on a fixed repertoire of activity patterns and associated those patterns with different movements after learning. These results indicate that the activity patterns that a neural population can generate are even more constrained than previously thought and might explain why it is often difficult to quickly learn to a high level of proficiency.

摘要

行为是由神经元群体的协调活动驱动的。学习需要大脑改变产生的神经群体活动,以实现给定的行为目标。在学习过程中,群体活动如何重新组织?我们在灵长类动物恒河猴的初级运动皮层中研究了脑机接口 (BCI) 任务中的短期学习期间的皮质内群体活动。在 BCI 中,神经活动和行为之间的映射是完全已知的,这使我们能够严格定义关于学习过程中神经重组的假设。我们发现,群体活动的变化遵循一种次优的神经再关联策略:动物依赖于固定的活动模式库,并在学习后将这些模式与不同的运动相关联。这些结果表明,神经群体可以产生的活动模式比以前想象的更加受限,这可能解释了为什么通常很难快速学习到很高的熟练程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3c/5876156/d4ebda5718db/nihms937762f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验