Suppr超能文献

脑机接口任务中的均匀和非均匀扰动引发相似的神经策略。

Uniform and Non-uniform Perturbations in Brain-Machine Interface Task Elicit Similar Neural Strategies.

作者信息

Armenta Salas Michelle, Helms Tillery Stephen I

机构信息

SensoriMotor Research Group, School of Biological and Health Systems Engineering, Arizona State University Tempe, AZ, USA.

出版信息

Front Syst Neurosci. 2016 Aug 23;10:70. doi: 10.3389/fnsys.2016.00070. eCollection 2016.

Abstract

The neural mechanisms that take place during learning and adaptation can be directly probed with brain-machine interfaces (BMIs). We developed a BMI controlled paradigm that enabled us to enforce learning by introducing perturbations which changed the relationship between neural activity and the BMI's output. We introduced a uniform perturbation to the system, through a visuomotor rotation (VMR), and a non-uniform perturbation, through a decorrelation task. The controller in the VMR was essentially unchanged, but produced an output rotated at 30° from the neurally specified output. The controller in the decorrelation trials decoupled the activity of neurons that were highly correlated in the BMI task by selectively forcing the preferred directions of these cell pairs to be orthogonal. We report that movement errors were larger in the decorrelation task, and subjects needed more trials to restore performance back to baseline. During learning, we measured decreasing trends in preferred direction changes and cross-correlation coefficients regardless of task type. Conversely, final adaptations in neural tunings were dependent on the type controller used (VMR or decorrelation). These results hint to the similar process the neural population might engage while adapting to new tasks, and how, through a global process, the neural system can arrive to individual solutions.

摘要

在学习和适应过程中发生的神经机制可以通过脑机接口(BMI)直接进行探究。我们开发了一种BMI控制范式,通过引入改变神经活动与BMI输出之间关系的扰动来促使学习。我们通过视觉运动旋转(VMR)向系统引入均匀扰动,通过去相关任务引入非均匀扰动。VMR中的控制器基本不变,但产生的输出相对于神经指定输出旋转了30°。去相关试验中的控制器通过有选择地迫使这些细胞对的偏好方向正交,使BMI任务中高度相关的神经元活动解耦。我们报告称,去相关任务中的运动误差更大,受试者需要更多试验才能将性能恢复到基线水平。在学习过程中,无论任务类型如何,我们都测量到偏好方向变化和互相关系数呈下降趋势。相反,神经调谐的最终适应取决于所使用的控制器类型(VMR或去相关)。这些结果暗示了神经群体在适应新任务时可能参与的相似过程,以及神经系统如何通过一个全局过程得出个体解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验