Suppr超能文献

用于腱骨修复的分级结构支架的设计与制作。

Design and Fabrication of a Hierarchically Structured Scaffold for Tendon-to-Bone Repair.

机构信息

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.

Department of Orthopaedic Surgery, Columbia University, New York, NY, 10032, USA.

出版信息

Adv Mater. 2018 Apr;30(16):e1707306. doi: 10.1002/adma.201707306. Epub 2018 Mar 13.

Abstract

A hierarchically structured scaffold is designed and fabricated for facilitating tendon-to-bone repair. The scaffold is composed of three regions with distinct functions: (i) an array of channels to guide the in-growth of cells and aligned deposition of collagen fibers, as well as integration of the scaffold with the tendon side, (ii) a region with a gradient in mineral composition to facilitate stress transfer between tendon and bone, and (iii) a mineralized inverse opal region to promote the integration of the scaffold with the underlying bone. Cell culture experiments confirm that adipose-derived stromal cells are able to infiltrate and proliferate through the entire thickness of the scaffold without compromised cell viability. The seeded stem cells exhibit directed differentiation into tenocytes and osteoblasts along the mineral gradient as a response to the gradient in Young's modulus. This novel scaffold holds great promise to promote the formation of a functional tendon-to-bone attachment by offering a structurally and compositionally appropriate microenvironment for healing.

摘要

设计并制造了一种分层结构的支架,以促进肌腱-骨修复。该支架由具有不同功能的三个区域组成:(i)用于引导细胞向内生长和胶原纤维的定向沉积的通道阵列,以及支架与肌腱侧的整合,(ii)具有矿物质组成梯度的区域,以促进肌腱和骨骼之间的应力传递,以及(iii)矿化的反蛋白石区域,以促进支架与下面骨骼的整合。细胞培养实验证实,脂肪来源的基质细胞能够在不影响细胞活力的情况下渗透并增殖穿过支架的整个厚度。接种的干细胞表现出沿矿物质梯度的定向分化为肌腱细胞和成骨细胞,作为对杨氏模量梯度的响应。这种新型支架有望通过提供结构和组成适当的微环境来促进功能腱-骨附着的形成,从而促进愈合。

相似文献

1
Design and Fabrication of a Hierarchically Structured Scaffold for Tendon-to-Bone Repair.
Adv Mater. 2018 Apr;30(16):e1707306. doi: 10.1002/adma.201707306. Epub 2018 Mar 13.
2
In Vivo Evaluation of Adipose-Derived Stromal Cells Delivered with a Nanofiber Scaffold for Tendon-to-Bone Repair.
Tissue Eng Part A. 2015 Nov;21(21-22):2766-74. doi: 10.1089/ten.TEA.2015.0101. Epub 2015 Oct 20.
3
Fabrication and Characterization of Biphasic Silk Fibroin Scaffolds for Tendon/Ligament-to-Bone Tissue Engineering.
Tissue Eng Part A. 2017 Aug;23(15-16):859-872. doi: 10.1089/ten.TEA.2016.0460. Epub 2017 Apr 21.
4
5
6
Augmenting Tendon-to-Bone Repair with Functionally Graded Scaffolds.
Adv Healthc Mater. 2021 May;10(9):e2002269. doi: 10.1002/adhm.202002269. Epub 2021 Mar 10.
8
Aligned Gelatin Microribbon Scaffolds with Hydroxyapatite Gradient for Engineering the Bone-Tendon Interface.
Tissue Eng Part A. 2022 Aug;28(15-16):712-723. doi: 10.1089/ten.TEA.2021.0099.

引用本文的文献

1
Janus hydrogel microrobots with bioactive ions for the regeneration of tendon-bone interface.
Nat Commun. 2025 Mar 4;16(1):2189. doi: 10.1038/s41467-025-57499-x.
2
Tissue Mimetic Membranes for Healing Augmentation of Tendon-Bone Interface in Rotator Cuff Repair.
Adv Mater. 2025 Mar;37(10):e2407358. doi: 10.1002/adma.202407358. Epub 2025 Jan 31.
3
Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair.
Biomater Res. 2025 Jan 22;29:0132. doi: 10.34133/bmr.0132. eCollection 2025.
5
Reliable Fabrication of Mineral-Graded Scaffolds by Spin-Coating and Laser Machining for Use in Tendon-to-Bone Insertion Repair.
Adv Healthc Mater. 2024 Dec;13(31):e2402531. doi: 10.1002/adhm.202402531. Epub 2024 Aug 5.
7
Advances in non-coding RNA in tendon injuries.
Front Genet. 2024 May 21;15:1396195. doi: 10.3389/fgene.2024.1396195. eCollection 2024.
10
Immunomodulatory multicellular scaffolds for tendon-to-bone regeneration.
Sci Adv. 2024 Mar 8;10(10):eadk6610. doi: 10.1126/sciadv.adk6610.

本文引用的文献

1
Fluorescence of Picrosirius Red Multiplexed With Immunohistochemistry for the Quantitative Assessment of Collagen in Tissue Sections.
J Histochem Cytochem. 2017 Aug;65(8):479-490. doi: 10.1369/0022155417718541. Epub 2017 Jul 10.
2
Inverse Opal Scaffolds and Their Biomedical Applications.
Adv Mater. 2017 Sep;29(33). doi: 10.1002/adma.201701115. Epub 2017 Jun 26.
3
The tendon-to-bone attachment: Unification through disarray.
Nat Mater. 2017 May 25;16(6):607-608. doi: 10.1038/nmat4906.
4
The microstructure and micromechanics of the tendon-bone insertion.
Nat Mater. 2017 Jun;16(6):664-670. doi: 10.1038/nmat4863. Epub 2017 Feb 27.
5
Advances in biologic augmentation for rotator cuff repair.
Ann N Y Acad Sci. 2016 Nov;1383(1):97-114. doi: 10.1111/nyas.13267. Epub 2016 Oct 17.
7
Double-Network Hydrogels Strongly Bondable to Bones by Spontaneous Osteogenesis Penetration.
Adv Mater. 2016 Aug;28(31):6740-5. doi: 10.1002/adma.201601030. Epub 2016 May 17.
8
Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications.
Stem Cells Int. 2016;2016:6737345. doi: 10.1155/2016/6737345. Epub 2016 Feb 21.
9
Advancing biomaterials of human origin for tissue engineering.
Prog Polym Sci. 2016 Feb 1;53:86-168. doi: 10.1016/j.progpolymsci.2015.02.004. Epub 2015 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验