Noel Jean-Paul, Blanke Olaf, Magosso Elisa, Serino Andrea
Laboratory of Cognitive Neuroscience, Brain Mind Institute, Faculty of Life Science, Ecole Polytechnique Federale de Lausanne, Lausanne , Switzerland.
Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne, Lausanne , Switzerland.
J Neurophysiol. 2018 Jun 1;119(6):2307-2333. doi: 10.1152/jn.00652.2017. Epub 2018 Mar 14.
Interactions between the body and the environment occur within the peripersonal space (PPS), the space immediately surrounding the body. The PPS is encoded by multisensory (audio-tactile, visual-tactile) neurons that possess receptive fields (RFs) anchored on the body and restricted in depth. The extension in depth of PPS neurons' RFs has been documented to change dynamically as a function of the velocity of incoming stimuli, but the underlying neural mechanisms are still unknown. Here, by integrating a psychophysical approach with neural network modeling, we propose a mechanistic explanation behind this inherent dynamic property of PPS. We psychophysically mapped the size of participant's peri-face and peri-trunk space as a function of the velocity of task-irrelevant approaching auditory stimuli. Findings indicated that the peri-trunk space was larger than the peri-face space, and, importantly, as for the neurophysiological delineation of RFs, both of these representations enlarged as the velocity of incoming sound increased. We propose a neural network model to mechanistically interpret these findings: the network includes reciprocal connections between unisensory areas and higher order multisensory neurons, and it implements neural adaptation to persistent stimulation as a mechanism sensitive to stimulus velocity. The network was capable of replicating the behavioral observations of PPS size remapping and relates behavioral proxies of PPS size to neurophysiological measures of multisensory neurons' RF size. We propose that a biologically plausible neural adaptation mechanism embedded within the network encoding for PPS can be responsible for the dynamic alterations in PPS size as a function of the velocity of incoming stimuli. NEW & NOTEWORTHY Interactions between body and environment occur within the peripersonal space (PPS). PPS neurons are highly dynamic, adapting online as a function of body-object interactions. The mechanistic underpinning PPS dynamic properties are unexplained. We demonstrate with a psychophysical approach that PPS enlarges as incoming stimulus velocity increases, efficiently preventing contacts with faster approaching objects. We present a neurocomputational model of multisensory PPS implementing neural adaptation to persistent stimulation to propose a neurophysiological mechanism underlying this effect.
身体与环境之间的相互作用发生在个人周边空间(PPS)内,即身体周围紧邻的空间。PPS由多感觉(听觉 - 触觉、视觉 - 触觉)神经元编码,这些神经元拥有锚定在身体上且深度受限的感受野(RFs)。已有文献记载,PPS神经元感受野的深度扩展会根据传入刺激的速度动态变化,但其潜在的神经机制仍然未知。在此,通过将心理物理学方法与神经网络建模相结合,我们提出了一种关于PPS这种固有动态特性背后的机制性解释。我们通过心理物理学方法将参与者面部周边和躯干周边空间的大小映射为与任务无关的接近听觉刺激速度的函数。研究结果表明,躯干周边空间大于面部周边空间,并且重要的是,就感受野的神经生理学界定而言,随着传入声音速度的增加,这两种表征都会扩大。我们提出一个神经网络模型来从机制上解释这些发现:该网络包括单感觉区域与高阶多感觉神经元之间的相互连接,并且它将神经适应持续刺激作为一种对刺激速度敏感的机制来实现。该网络能够复制PPS大小重新映射的行为观察结果,并将PPS大小的行为指标与多感觉神经元感受野大小的神经生理学测量联系起来。我们提出,嵌入在编码PPS的网络中的一种生物学上合理的神经适应机制可以解释PPS大小随传入刺激速度的动态变化。新内容与值得注意之处:身体与环境之间的相互作用发生在个人周边空间(PPS)内。PPS神经元具有高度动态性,会根据身体与物体的相互作用在线进行适应。PPS动态特性的机制基础尚不清楚。我们通过心理物理学方法证明,随着传入刺激速度的增加,PPS会扩大,从而有效地防止与快速接近的物体接触。我们提出了一个多感觉PPS的神经计算模型,该模型实现了对持续刺激的神经适应,以提出这种效应背后的神经生理机制。