Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA.
Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA.
Crit Care Med. 2018 Jun;46(6):915-925. doi: 10.1097/CCM.0000000000003084.
To find and validate generalizable sepsis subtypes using data-driven clustering.
We used advanced informatics techniques to pool data from 14 bacterial sepsis transcriptomic datasets from eight different countries (n = 700).
Retrospective analysis.
Persons admitted to the hospital with bacterial sepsis.
None.
A unified clustering analysis across 14 discovery datasets revealed three subtypes, which, based on functional analysis, we termed "Inflammopathic, Adaptive, and Coagulopathic." We then validated these subtypes in nine independent datasets from five different countries (n = 600). In both discovery and validation data, the Adaptive subtype is associated with a lower clinical severity and lower mortality rate, and the Coagulopathic subtype is associated with higher mortality and clinical coagulopathy. Further, these clusters are statistically associated with clusters derived by others in independent single sepsis cohorts.
The three sepsis subtypes may represent a unifying framework for understanding the molecular heterogeneity of the sepsis syndrome. Further study could potentially enable a precision medicine approach of matching novel immunomodulatory therapies with septic patients most likely to benefit.
使用数据驱动的聚类方法寻找和验证具有普遍性的脓毒症亚型。
我们使用先进的信息学技术,汇集了来自八个不同国家的 14 个细菌脓毒症转录组数据集的数据(n=700)。
回顾性分析。
因细菌脓毒症住院的患者。
无。
对 14 个发现数据集进行的统一聚类分析揭示了三种亚型,根据功能分析,我们将其命名为“炎症型、适应型和凝血型”。然后,我们在来自五个不同国家的九个独立数据集(n=600)中验证了这些亚型。在发现和验证数据中,适应型与较低的临床严重程度和较低的死亡率相关,而凝血型与较高的死亡率和临床凝血障碍相关。此外,这些聚类与其他独立的单一脓毒症队列中得出的聚类具有统计学关联。
这三种脓毒症亚型可能代表了理解脓毒症综合征分子异质性的统一框架。进一步的研究可能能够实现一种精准医学方法,将新型免疫调节疗法与最有可能受益的脓毒症患者相匹配。