Sweeney Timothy E, Shidham Aaditya, Wong Hector R, Khatri Purvesh
Department of Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA. Stanford Center for Biomedical Informatics Research, Stanford University, Palo Alto, CA 94305, USA.
Stanford Center for Biomedical Informatics Research, Stanford University, Palo Alto, CA 94305, USA.
Sci Transl Med. 2015 May 13;7(287):287ra71. doi: 10.1126/scitranslmed.aaa5993.
Although several dozen studies of gene expression in sepsis have been published, distinguishing sepsis from a sterile systemic inflammatory response syndrome (SIRS) is still largely up to clinical suspicion. We hypothesized that a multicohort analysis of the publicly available sepsis gene expression data sets would yield a robust set of genes for distinguishing patients with sepsis from patients with sterile inflammation. A comprehensive search for gene expression data sets in sepsis identified 27 data sets matching our inclusion criteria. Five data sets (n = 663 samples) compared patients with sterile inflammation (SIRS/trauma) to time-matched patients with infections. We applied our multicohort analysis framework that uses both effect sizes and P values in a leave-one-data set-out fashion to these data sets. We identified 11 genes that were differentially expressed (false discovery rate ≤1%, inter-data set heterogeneity P > 0.01, summary effect size >1.5-fold) across all discovery cohorts with excellent diagnostic power [mean area under the receiver operating characteristic curve (AUC), 0.87; range, 0.7 to 0.98]. We then validated these 11 genes in 15 independent cohorts comparing (i) time-matched infected versus noninfected trauma patients (4 cohorts), (ii) ICU/trauma patients with infections over the clinical time course (3 cohorts), and (iii) healthy subjects versus sepsis patients (8 cohorts). In the discovery Glue Grant cohort, SIRS plus the 11-gene set improved prediction of infection (compared to SIRS alone) with a continuous net reclassification index of 0.90. Overall, multicohort analysis of time-matched cohorts yielded 11 genes that robustly distinguish sterile inflammation from infectious inflammation.
尽管已经发表了几十项关于脓毒症基因表达的研究,但将脓毒症与无菌性全身炎症反应综合征(SIRS)区分开来在很大程度上仍依赖于临床怀疑。我们假设,对公开可用的脓毒症基因表达数据集进行多队列分析将产生一组强大的基因,用于区分脓毒症患者和无菌性炎症患者。对脓毒症基因表达数据集的全面搜索确定了27个符合我们纳入标准的数据集。五个数据集(n = 663个样本)将无菌性炎症患者(SIRS/创伤)与时间匹配的感染患者进行了比较。我们将我们的多队列分析框架以留一数据集的方式应用于这些数据集,该框架同时使用效应大小和P值。我们确定了11个在所有发现队列中差异表达的基因(错误发现率≤1%,数据集间异质性P > 0.01,汇总效应大小>1.5倍),具有出色的诊断能力[受试者操作特征曲线(AUC)下的平均面积,0.87;范围,0.7至0.98]。然后,我们在15个独立队列中验证了这11个基因,这些队列比较了(i)时间匹配的感染与未感染创伤患者(4个队列),(ii)ICU/创伤患者在临床病程中的感染情况(3个队列),以及(iii)健康受试者与脓毒症患者(8个队列)。在发现性胶水资助队列中,SIRS加上11基因集改善了感染预测(与单独的SIRS相比),连续净重新分类指数为0.90。总体而言,对时间匹配队列的多队列分析产生了11个基因,这些基因能够可靠地区分无菌性炎症和感染性炎症。