Suppr超能文献

以单细胞分辨率对透明完整的心脏组织进行成像。

Imaging transparent intact cardiac tissue with single-cell resolution.

作者信息

Wang Zhiwei, Zhang Jie, Fan Guangpu, Zhao Hui, Wang Xu, Zhang Jing, Zhang Peide, Wang Wei

机构信息

Cardiovascular Surgery Department, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China.

Department of Cardiovascular Surgery, Peking University People's Hospital, 11 Xizhimen South Road, Beijing, 100044, China.

出版信息

Biomed Opt Express. 2018 Jan 4;9(2):423-436. doi: 10.1364/BOE.9.000423. eCollection 2018 Feb 1.

Abstract

We developed a new method, SUT (Scheme Update on tissue Transparency), to view cardiac microstructures and unveil the molecular changes underlying cardiac diseases. SUT is an effective method to clear whole-hearts from different species. Over the course of 4 - 6 days we obtained transparent whole-layer left ventricular tissues from mice with only an approximate 1% protein loss. In addition, EAL (Electrophoretic Antibody Labeling) was used to achieve fast antibody labeling by electric force, which significantly reduced antibody incubation time from days to hours. SUT, together with EAL and modern imaging techniques, were successfully used to visualize three-dimensional spatial distribution of various molecules in cardiac tissue. We also observed changes in the number and phenotypes of fibroblasts during post-myocardial infarction in a stereoscopic pattern. We believe that our technique opens a new avenue to explore the mechanisms underlying cardiac diseases.

摘要

我们开发了一种新方法——组织透明化方案更新(SUT),用于观察心脏微观结构并揭示心脏病背后的分子变化。SUT是一种清除不同物种全心脏组织的有效方法。在4至6天的时间里,我们从小鼠身上获得了透明的全层左心室组织,蛋白质损失仅约1%。此外,电泳抗体标记(EAL)通过电力实现了快速抗体标记,显著将抗体孵育时间从数天缩短至数小时。SUT与EAL以及现代成像技术一起,成功用于可视化心脏组织中各种分子的三维空间分布。我们还以立体模式观察了心肌梗死后成纤维细胞数量和表型的变化。我们相信我们的技术为探索心脏病的发病机制开辟了一条新途径。

相似文献

1
Imaging transparent intact cardiac tissue with single-cell resolution.
Biomed Opt Express. 2018 Jan 4;9(2):423-436. doi: 10.1364/BOE.9.000423. eCollection 2018 Feb 1.
4
High resolution optical imaging of infarction in intact organs.
Biotechniques. 2005 Sep;39(3):373-6. doi: 10.2144/05393ST05.
8
Imaging Cleared Embryonic and Postnatal Hearts at Single-cell Resolution.
J Vis Exp. 2016 Oct 7(116):54303. doi: 10.3791/54303.
9
Three-Dimensional Optical Mapping of Nanoparticle Distribution in Intact Tissues.
ACS Nano. 2016 May 24;10(5):5468-78. doi: 10.1021/acsnano.6b01879. Epub 2016 Apr 28.
10
High resolution stereoscopic volume visualization of the mouse arginine vasopressin system.
J Neurosci Methods. 2010 Mar 15;187(1):41-5. doi: 10.1016/j.jneumeth.2009.12.011. Epub 2009 Dec 29.

引用本文的文献

1
Oxidation-reduction imaging of myoglobin reveals two-phase oxidation in the reperfused myocardium.
Basic Res Cardiol. 2024 Jun;119(3):435-451. doi: 10.1007/s00395-024-01040-6. Epub 2024 Mar 18.
2
Guidelines on antibody use in physiology research.
Am J Physiol Renal Physiol. 2024 Mar 1;326(3):F511-F533. doi: 10.1152/ajprenal.00347.2023. Epub 2024 Jan 18.
3
Pocket CLARITY enables distortion-mitigated cardiac microstructural tissue characterization of large-scale specimens.
Front Cardiovasc Med. 2022 Nov 14;9:1037500. doi: 10.3389/fcvm.2022.1037500. eCollection 2022.
4
Tissue Optical Clearing: State of the Art and Prospects.
Diagnostics (Basel). 2022 Jun 23;12(7):1534. doi: 10.3390/diagnostics12071534.
5
Optical tissue clearing associated with 3D imaging: application in preclinical and clinical studies.
Histochem Cell Biol. 2022 May;157(5):497-511. doi: 10.1007/s00418-022-02081-5. Epub 2022 Mar 2.
8
Tissue clearing and imaging methods for cardiovascular development.
iScience. 2021 Apr 1;24(4):102387. doi: 10.1016/j.isci.2021.102387. eCollection 2021 Apr 23.
9
Physical and chemical mechanisms of tissue optical clearing.
iScience. 2021 Feb 12;24(3):102178. doi: 10.1016/j.isci.2021.102178. eCollection 2021 Mar 19.
10
Biomedical Applications of Tissue Clearing and Three-Dimensional Imaging in Health and Disease.
iScience. 2020 Aug 21;23(8):101432. doi: 10.1016/j.isci.2020.101432. Epub 2020 Aug 2.

本文引用的文献

2
3D imaging in CUBIC-cleared mouse heart tissue: going deeper.
Biomed Opt Express. 2016 Aug 29;7(9):3716-3720. doi: 10.1364/BOE.7.003716. eCollection 2016 Sep 1.
3
Optimization of CLARITY for Clearing Whole-Brain and Other Intact Organs.
eNeuro. 2015 May 25;2(3). doi: 10.1523/ENEURO.0022-15.2015. eCollection 2015 May-Jun.
4
Clarifying Tissue Clearing.
Cell. 2015 Jul 16;162(2):246-257. doi: 10.1016/j.cell.2015.06.067.
5
Whole-body imaging with single-cell resolution by tissue decolorization.
Cell. 2014 Nov 6;159(4):911-24. doi: 10.1016/j.cell.2014.10.034.
6
Single-cell phenotyping within transparent intact tissue through whole-body clearing.
Cell. 2014 Aug 14;158(4):945-958. doi: 10.1016/j.cell.2014.07.017. Epub 2014 Jul 31.
7
Advanced CLARITY for rapid and high-resolution imaging of intact tissues.
Nat Protoc. 2014 Jul;9(7):1682-97. doi: 10.1038/nprot.2014.123. Epub 2014 Jun 19.
8
Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis.
Cell. 2014 Apr 24;157(3):726-39. doi: 10.1016/j.cell.2014.03.042. Epub 2014 Apr 17.
9
Fibroblasts in myocardial infarction: a role in inflammation and repair.
J Mol Cell Cardiol. 2014 May;70:74-82. doi: 10.1016/j.yjmcc.2013.11.015. Epub 2013 Dec 7.
10
Origin, development, and differentiation of cardiac fibroblasts.
J Mol Cell Cardiol. 2014 May;70:2-8. doi: 10.1016/j.yjmcc.2013.11.003. Epub 2013 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验