Suppr超能文献

先进的CLARITY技术用于完整组织的快速高分辨率成像。

Advanced CLARITY for rapid and high-resolution imaging of intact tissues.

作者信息

Tomer Raju, Ye Li, Hsueh Brian, Deisseroth Karl

机构信息

1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Howard Hughes Medical Institute, Stanford University, Stanford, California, USA. [3] CNC Program, Stanford University, Stanford, California, USA.

1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] CNC Program, Stanford University, Stanford, California, USA.

出版信息

Nat Protoc. 2014 Jul;9(7):1682-97. doi: 10.1038/nprot.2014.123. Epub 2014 Jun 19.

Abstract

CLARITY is a method for chemical transformation of intact biological tissues into a hydrogel-tissue hybrid, which becomes amenable to interrogation with light and macromolecular labels while retaining fine structure and native biological molecules. This emerging accessibility of information from large intact samples has created both new opportunities and new challenges. Here we describe protocols spanning multiple dimensions of the CLARITY workflow, ranging from simple, reliable and efficient lipid removal without electrophoretic instrumentation (passive CLARITY) to optimized objectives and integration with light-sheet optics (CLARITY-optimized light-sheet microscopy (COLM)) for accelerating data collection from clarified samples by several orders of magnitude while maintaining or increasing quality and resolution. The entire protocol takes from 7-28 d to complete for an adult mouse brain, including hydrogel embedding, full lipid removal, whole-brain antibody staining (which, if needed, accounts for 7-10 of the days), and whole-brain high-resolution imaging; timing within this window depends on the choice of lipid removal options, on the size of the tissue, and on the number and type of immunostaining rounds performed. This protocol has been successfully applied to the study of adult mouse, adult zebrafish and adult human brains, and it may find many other applications in the structural and molecular analysis of large assembled biological systems.

摘要

CLARITY是一种将完整生物组织化学转化为水凝胶-组织杂交体的方法,该杂交体在保留精细结构和天然生物分子的同时,易于用光和大分子标记物进行检测。从大型完整样本中获取信息的这种新方法既带来了新机遇,也带来了新挑战。在此,我们描述了涵盖CLARITY工作流程多个维度的方案,从无需电泳仪器的简单、可靠且高效的脂质去除方法(被动CLARITY)到优化目标并与光片光学系统集成(CLARITY优化光片显微镜(COLM)),以便在保持或提高质量和分辨率的同时,将从澄清样本中收集数据的速度提高几个数量级。对于成年小鼠大脑,整个方案需要7至28天才能完成,包括水凝胶包埋、完全脂质去除、全脑抗体染色(如有需要,这占7至10天)以及全脑高分辨率成像;这个时间范围内的时长取决于脂质去除方法的选择、组织大小以及所进行的免疫染色轮次的数量和类型。该方案已成功应用于成年小鼠、成年斑马鱼和成年人类大脑的研究,并且可能在大型组装生物系统的结构和分子分析中找到许多其他应用。

相似文献

1
Advanced CLARITY for rapid and high-resolution imaging of intact tissues.
Nat Protoc. 2014 Jul;9(7):1682-97. doi: 10.1038/nprot.2014.123. Epub 2014 Jun 19.
2
Structural and molecular interrogation of intact biological systems.
Nature. 2013 May 16;497(7449):332-7. doi: 10.1038/nature12107. Epub 2013 Apr 10.
3
Modified CLARITY Achieving Faster and Better Intact Mouse Brain Clearing and Immunostaining.
Sci Rep. 2019 Jul 22;9(1):10571. doi: 10.1038/s41598-019-46814-4.
4
Optimization of CLARITY for Clearing Whole-Brain and Other Intact Organs.
eNeuro. 2015 May 25;2(3). doi: 10.1523/ENEURO.0022-15.2015. eCollection 2015 May-Jun.
5
3D Clearing and Molecular Labeling in Plant Tissues.
Methods Mol Biol. 2018;1770:285-304. doi: 10.1007/978-1-4939-7786-4_17.
8
Clarity and Immunofluorescence on Mouse Brain Tissue.
Curr Protoc Neurosci. 2018 Apr;83(1):e46. doi: 10.1002/cpns.46.
10
CLARITY for mapping the nervous system.
Nat Methods. 2013 Jun;10(6):508-13. doi: 10.1038/nmeth.2481.

引用本文的文献

1
A neuronal architecture underlying autonomic dysreflexia.
Nature. 2025 Sep 17. doi: 10.1038/s41586-025-09487-w.
2
Cutting-edge technologies in neural regeneration.
Cell Regen. 2025 Sep 5;14(1):38. doi: 10.1186/s13619-025-00260-y.
4
3D visualization of uterus and ovary: tissue clearing techniques and biomedical applications.
Front Bioeng Biotechnol. 2025 Jul 7;13:1610539. doi: 10.3389/fbioe.2025.1610539. eCollection 2025.
7
Three-dimensional assessments are necessary to determine the true, spatially resolved composition of tissues.
Cell Rep Methods. 2025 Jun 16;5(6):101075. doi: 10.1016/j.crmeth.2025.101075. Epub 2025 Jun 9.
9
Materials Advances in Devices for Heart Disease Interventions.
Adv Mater. 2025 Jul;37(27):e2420114. doi: 10.1002/adma.202420114. Epub 2025 Apr 17.

本文引用的文献

1
Temperature Effect on the Nanostructure of SDS Micelles in Water.
J Res Natl Inst Stand Technol. 2013 Apr 11;118:151-67. doi: 10.6028/jres.118.008. eCollection 2013.
2
Correcting spherical aberrations in confocal light sheet microscopy: a theoretical study.
Microsc Res Tech. 2014 Jul;77(7):483-91. doi: 10.1002/jemt.22330. Epub 2014 Jan 3.
3
Light microscopy mapping of connections in the intact brain.
Trends Cogn Sci. 2013 Dec;17(12):596-9. doi: 10.1016/j.tics.2013.10.005. Epub 2013 Nov 6.
5
SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction.
Nat Neurosci. 2013 Aug;16(8):1154-61. doi: 10.1038/nn.3447. Epub 2013 Jun 23.
6
CLARITY for mapping the nervous system.
Nat Methods. 2013 Jun;10(6):508-13. doi: 10.1038/nmeth.2481.
7
Structural and molecular interrogation of intact biological systems.
Nature. 2013 May 16;497(7449):332-7. doi: 10.1038/nature12107. Epub 2013 Apr 10.
8
TeraStitcher - a tool for fast automatic 3D-stitching of teravoxel-sized microscopy images.
BMC Bioinformatics. 2012 Nov 27;13:316. doi: 10.1186/1471-2105-13-316.
9
Three-dimensional imaging of solvent-cleared organs using 3DISCO.
Nat Protoc. 2012 Nov;7(11):1983-95. doi: 10.1038/nprot.2012.119. Epub 2012 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验