Suppr超能文献

影像学的临床附加价值:基于结局预测的视角

The Clinical Added Value of Imaging: A Perspective From Outcome Prediction.

作者信息

Jollans Lee, Whelan Robert

机构信息

the School of Psychology, University College Dublin, Dublin, Ireland.

the School of Psychology, University College Dublin, Dublin, Ireland.

出版信息

Biol Psychiatry Cogn Neurosci Neuroimaging. 2016 Sep;1(5):423-432. doi: 10.1016/j.bpsc.2016.04.005. Epub 2016 May 4.

Abstract

Objective measures of psychiatric health would be of benefit in clinical practice. Despite considerable research in the area of psychiatric neuroimaging outcome prediction, translating putative neuroimaging markers (neuromarkers) of a disorder into clinical practice has proven challenging. We reviewed studies that used neuroimaging measures to predict treatment response and disease outcomes in major depressive disorder, substance use, autism spectrum disorder, psychosis, and dementia. The majority of studies sought to predict psychiatric outcomes rather than develop a specific biological index of future disease trajectory. Studies varied widely with respect to sample size and quantification of out-of-sample prediction model performance. Many studies were able to predict psychiatric outcomes with moderate accuracy, with neuroimaging data often augmenting the prediction compared to clinical or psychometric data alone. We make recommendations for future research with respect to methods that can increase the generalizability and reproducibility of predictions. Large sample sizes in conjunction with machine learning methods, such as feature selection, cross-validation, and random label permutation, provide significant improvement to and quantification of generalizability. Further refinement of neuroimaging protocols and analysis methods will likely facilitate the clinical applicability of predictive imaging markers in psychiatry. Such clinically relevant neuromarkers need not necessarily be grounded in the pathophysiology of the disease, but identifying these neuromarkers may suggest targets for future research into disease mechanisms. The ability of imaging prediction models to augment clinical judgments will ultimately depend on the personal and economic costs and benefits to the patient.

摘要

精神健康的客观测量方法在临床实践中会很有帮助。尽管在精神疾病神经影像学结果预测领域进行了大量研究,但将一种疾病的假定神经影像学标志物(神经标志物)转化为临床实践已被证明具有挑战性。我们回顾了使用神经影像学测量来预测重度抑郁症、物质使用障碍、自闭症谱系障碍、精神病和痴呆症的治疗反应和疾病结局的研究。大多数研究旨在预测精神疾病结局,而非建立未来疾病轨迹的特定生物学指标。这些研究在样本量和样本外预测模型性能的量化方面差异很大。许多研究能够以适度的准确性预测精神疾病结局,与单独的临床或心理测量数据相比,神经影像学数据往往能增强预测效果。我们针对未来研究提出了一些建议,涉及能够提高预测的可推广性和可重复性的方法。大样本量结合机器学习方法,如特征选择、交叉验证和随机标签置换,可显著提高预测的可推广性并对其进行量化。进一步完善神经影像学方案和分析方法可能会促进预测性成像标志物在精神病学中的临床应用。此类与临床相关的神经标志物不一定基于疾病的病理生理学,但识别这些神经标志物可能会为未来疾病机制研究指明方向。成像预测模型增强临床判断的能力最终将取决于对患者的个人成本和经济成本及收益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验