Suppr超能文献

使用机器学习和可穿戴传感器预测切割动作的能量学和运动学。

Use of Machine Learning and Wearable Sensors to Predict Energetics and Kinematics of Cutting Maneuvers.

机构信息

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy.

Fondazione Istituto Farmacologico Filippo Serpero, 20159 Milano, Italy.

出版信息

Sensors (Basel). 2019 Jul 12;19(14):3094. doi: 10.3390/s19143094.

Abstract

Changes of directions and cutting maneuvers, including 180-degree turns, are common locomotor actions in team sports, implying high mechanical load. While the mechanics and neurophysiology of turns have been extensively studied in laboratory conditions, modern inertial measurement units allow us to monitor athletes directly on the field. In this study, we applied four supervised machine learning techniques (linear regression, support vector regression/machine, boosted decision trees and artificial neural networks) to predict turn direction, speed (before/after turn) and the related positive/negative mechanical work. Reference values were computed using an optical motion capture system. We collected data from 13 elite female soccer players performing a shuttle run test, wearing a six-axes inertial sensor at the pelvis level. A set of 18 features (predictors) were obtained from accelerometers, gyroscopes and barometer readings. Turn direction classification returned good results (accuracy > 98.4%) with all methods. Support vector regression and neural networks obtained the best performance in the estimation of positive/negative mechanical work (coefficient of determination R = 0.42-0.43, mean absolute error = 1.14-1.41 J) and running speed before/after the turns (R = 0.66-0.69, mean absolute error = 0.15-018 m/s). Although models can be extended to different angles, we showed that meaningful information on turn kinematics and energetics can be obtained from inertial units with a data-driven approach.

摘要

方向变化和切割动作,包括 180 度转弯,是团队运动中常见的运动动作,意味着高机械负荷。虽然转弯的力学和神经生理学已经在实验室条件下得到了广泛研究,但现代惯性测量单元允许我们直接在场上监测运动员。在这项研究中,我们应用了四种监督机器学习技术(线性回归、支持向量回归/机器、增强决策树和人工神经网络)来预测转弯方向、速度(转弯前后)以及相关的正/负机械功。参考值是使用光学运动捕捉系统计算的。我们收集了 13 名精英女性足球运动员在进行穿梭跑测试时的数据,她们在骨盆水平处佩戴了一个六轴惯性传感器。从加速度计、陀螺仪和气压计读数中获得了一组 18 个特征(预测器)。转弯方向分类的所有方法都取得了很好的结果(准确率>98.4%)。支持向量回归和神经网络在正/负机械功的估计(决定系数 R = 0.42-0.43,平均绝对误差 = 1.14-1.41 J)和转弯前后的跑步速度(R = 0.66-0.69,平均绝对误差 = 0.15-018 m/s)方面取得了最佳性能。虽然模型可以扩展到不同的角度,但我们表明,从惯性单元中可以通过数据驱动的方法获得有关转弯运动学和能量学的有意义信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b141/6679305/b6c4344e0f97/sensors-19-03094-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验