CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
School of Medical Informatics, China Medical University, Shenyang, Liaoning, China.
Clin Cancer Res. 2018 Aug 1;24(15):3583-3592. doi: 10.1158/1078-0432.CCR-17-2507. Epub 2018 Mar 21.
We established a CT-derived approach to achieve accurate progression-free survival (PFS) prediction to EGFR tyrosine kinase inhibitors (TKI) therapy in multicenter, stage IV -mutated non-small cell lung cancer (NSCLC) patients. A total of 1,032 CT-based phenotypic characteristics were extracted according to the intensity, shape, and texture of NSCLC pretherapy images. On the basis of these CT features extracted from 117 stage IV -mutant NSCLC patients, a CT-based phenotypic signature was proposed using a Cox regression model with LASSO penalty for the survival risk stratification of EGFR-TKI therapy. The signature was validated using two independent cohorts (101 and 96 patients, respectively). The benefit of EGFR-TKIs in stratified patients was then compared with another stage-IV -mutant NSCLC cohort only treated with standard chemotherapy (56 patients). Furthermore, an individualized prediction model incorporating the phenotypic signature and clinicopathologic risk characteristics was proposed for PFS prediction, and also validated by multicenter cohorts. The signature consisted of 12 CT features demonstrated good accuracy for discriminating patients with rapid and slow progression to EGFR-TKI therapy in three cohorts (HR: 3.61, 3.77, and 3.67, respectively). Rapid progression patients received EGFR TKIs did not show significant difference with patients underwent chemotherapy for progression-free survival benefit ( = 0.682). Decision curve analysis revealed that the proposed model significantly improved the clinical benefit compared with the clinicopathologic-based characteristics model ( < 0.0001). The proposed CT-based predictive strategy can achieve individualized prediction of PFS probability to EGFR-TKI therapy in NSCLCs, which holds promise of improving the pretherapy personalized management of TKIs. .
我们建立了一种基于 CT 的方法,以实现对多中心、IV 期突变非小细胞肺癌(NSCLC)患者接受表皮生长因子受体酪氨酸激酶抑制剂(TKI)治疗的无进展生存期(PFS)的准确预测。根据 NSCLC 治疗前图像的强度、形状和纹理,共提取了 1032 种基于 CT 的表型特征。基于从 117 名 IV 期突变 NSCLC 患者中提取的这些 CT 特征,使用 Cox 回归模型和 LASSO 惩罚,提出了一种基于 CT 的表型特征签名,用于 EGFR-TKI 治疗的生存风险分层。该签名使用两个独立的队列(分别为 101 名和 96 名患者)进行了验证。然后,将分层患者的 EGFR-TKI 获益与仅接受标准化疗的另一个 IV 期突变 NSCLC 队列(56 名患者)进行了比较。此外,还提出了一种包含表型特征和临床病理风险特征的个体化预测模型,用于预测 PFS,并通过多中心队列进行了验证。该特征由 12 个 CT 特征组成,在三个队列中均能很好地区分接受 EGFR-TKI 治疗快速和缓慢进展的患者(HR:3.61、3.77 和 3.67)。接受 EGFR TKI 治疗的快速进展患者与接受化疗的患者在无进展生存期获益方面没有显著差异(=0.682)。决策曲线分析表明,与基于临床病理特征的模型相比,所提出的模型显著提高了临床获益(<0.0001)。所提出的基于 CT 的预测策略可以实现 NSCLC 患者接受 EGFR-TKI 治疗的 PFS 概率的个体化预测,有望改善 TKI 治疗前的个体化管理。