Suppr超能文献

基于腰骶部X线和影像组学的骨质疏松症诊断临床预测模型的开发与验证

Development and validation of a clinical prediction model for osteoporosis diagnosis by lumbosacral X-ray and radiomics.

作者信息

Chen Xiaofeng, Cai Dongling, Li Hao, Guo Weijun, Li Qian, Liang Jinjun, Xie Junxian, Liu Jincheng, Xiang Zhen, Dong Wenxuan, OuYang Sihong, Deng Zhuozheng, Wei Qipeng

机构信息

Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China.

Guangzhou University of Chinese Medicine, Guangzhou, China.

出版信息

Front Aging. 2025 Jul 1;6:1476902. doi: 10.3389/fragi.2025.1476902. eCollection 2025.

Abstract

PURPOSE

To develop a clinical prediction model for the diagnosis of osteoporosis using lumbosacral X-ray images through radiomics analysis.

METHODS

A total of 272 patients who underwent dual-energy X-ray absorptiometry (DXA) and lumbosacral X-ray examinations were categorized into two groups: (1) the training set (n = 191) and (2) the validation set (n = 81). Radiomic features were extracted using 3D Slicer software, and radiomic scores were calculated using the least absolute contraction and selection operator logistic regression, facilitating the generation of radiomic features. Subsequently, a clinical model, in conjunction with the radiomic features, was employed to develop a column-line diagram for the clinical and imaging feature prediction model. Performance evaluations for various models were conducted, encompassing recognition ability, accuracy, and clinical value, with the aim of identifying and optimizing prediction models.

RESULTS

The 12 most optimal imaging features were identified. Upon comprehensive performance analysis across different models, the clinical and radiomics model emerged as the most effective. The training set and test set area under the curves (AUCs) were 0.818 and 0.740, respectively. Additionally, the model exhibited a sensitivity and specificity of 81.6%, 80.6% and 77.5%, 73.2%, respectively.

CONCLUSION

In this study, we developed a column-line diagram that integrates clinical and radiomics feature, presenting a novel screening tool for osteoporosis in primary hospitals. This tool aims to enhance the efficiency of osteoporosis diagnosis in primary hospitals.

摘要

目的

通过放射组学分析,开发一种利用腰骶部X线图像诊断骨质疏松症的临床预测模型。

方法

将272例行双能X线吸收法(DXA)和腰骶部X线检查的患者分为两组:(1)训练集(n = 191)和(2)验证集(n = 81)。使用3D Slicer软件提取放射组学特征,并使用最小绝对收缩和选择算子逻辑回归计算放射组学分数,以促进放射组学特征的生成。随后,结合放射组学特征,采用临床模型开发用于临床和影像特征预测模型的列线图。对各种模型进行了性能评估,包括识别能力、准确性和临床价值,旨在识别和优化预测模型。

结果

确定了12个最佳影像特征。在对不同模型进行综合性能分析后,临床和放射组学模型最为有效。训练集和测试集的曲线下面积(AUC)分别为0.818和0.740。此外,该模型的敏感性和特异性分别为81.6%、80.6%和77.5%、73.2%。

结论

在本研究中,我们开发了一种整合临床和放射组学特征的列线图,为基层医院提供了一种新型的骨质疏松症筛查工具。该工具旨在提高基层医院骨质疏松症的诊断效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验