Suppr超能文献

检验组间均值差异:具有最小假设的多变量和重复测量分析。

Testing Mean Differences among Groups: Multivariate and Repeated Measures Analysis with Minimal Assumptions.

机构信息

a Department of Mathematics , University of Salzburg ; Department of Statistics , University of Kentucky.

b Institute of Statistics , University of Ulm.

出版信息

Multivariate Behav Res. 2018 May-Jun;53(3):348-359. doi: 10.1080/00273171.2018.1446320. Epub 2018 Mar 22.

Abstract

To date, there is a lack of satisfactory inferential techniques for the analysis of multivariate data in factorial designs, when only minimal assumptions on the data can be made. Presently available methods are limited to very particular study designs or assume either multivariate normality or equal covariance matrices across groups, or they do not allow for an assessment of the interaction effects across within-subjects and between-subjects variables. We propose and methodologically validate a parametric bootstrap approach that does not suffer from any of the above limitations, and thus provides a rather general and comprehensive methodological route to inference for multivariate and repeated measures data. As an example application, we consider data from two different Alzheimer's disease (AD) examination modalities that may be used for precise and early diagnosis, namely, single-photon emission computed tomography (SPECT) and electroencephalogram (EEG). These data violate the assumptions of classical multivariate methods, and indeed classical methods would not have yielded the same conclusions with regards to some of the factors involved.

摘要

迄今为止,当只能对数据做出最小假设时,对于因子设计中的多元数据分析,还缺乏令人满意的推理技术。目前可用的方法仅限于非常特殊的研究设计,或者假设多元正态性或组间协方差矩阵相等,或者它们不允许评估跨被试内和被试间变量的交互效应。我们提出并从方法上验证了一种参数自举方法,该方法没有上述任何限制,因此为多元和重复测量数据的推理提供了一种相当通用和全面的方法途径。作为一个示例应用,我们考虑了来自两种不同阿尔茨海默病 (AD) 检查方式的数据,这些数据可用于精确和早期诊断,即单光子发射计算机断层扫描 (SPECT) 和脑电图 (EEG)。这些数据违反了经典多元方法的假设,实际上,对于某些涉及的因素,经典方法不会得出相同的结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31af/5935051/8680f7a93147/HMBR_A_1446320_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验