The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Center for Metabolic and Degenerative Diseases, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
Graduate Program in Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
Brain Struct Funct. 2018 Jul;223(6):2685-2698. doi: 10.1007/s00429-018-1652-y. Epub 2018 Mar 23.
Stress evokes directed movement to escape or hide from potential danger. Corticotropin-releasing factor (CRF) neurons are highly activated by stress; however, it remains unclear how this activity participates in stress-evoked movement. The external globus pallidus (GPe) expresses high levels of the primary receptor for CRF, CRFR1, suggesting the GPe may serve as an entry point for stress-relevant information to reach basal ganglia circuits, which ultimately gate motor output. Indeed, projections from CRF neurons are present within the GPe, making direct contact with CRFR1-positive neurons. CRFR1 expression is heterogenous in the GPe; prototypic GPe neurons selectively express CRFR1, while arkypallidal neurons do not. Moreover, CRFR1-positive GPe neurons are excited by CRF via activation of CRFR1, while nearby CRFR1-negative neurons do not respond to CRF. Using monosynaptic rabies viral tracing techniques, we show that CRF neurons in the stress-activated paraventricular nucleus of the hypothalamus (PVN), central nucleus of the amygdala (CeA), and bed nucleus of the stria terminalis (BST) make synaptic connections with CRFR1-positive neurons in the GPe an unprecedented circuit connecting the limbic system with the basal ganglia. CRF neurons also make synapses on Npas1 neurons, although the majority of Npas1 neurons are arkypallidal and do not express CRFR1. Interestingly, prototypic and arkypallidal neurons receive different patterns of innervation from CRF-rich nuclei. Hypothalamic CRF neurons preferentially target prototypic neurons, while amygdalar CRF neurons preferentially target arkypallidal neurons, suggesting that these two inputs to the GPe may have different impacts on GPe output. Together, these data describe a novel neural circuit by which stress-relevant information carried by the limbic system signals in the GPe via CRF to influence motor output.
应激会引发定向运动,以逃避或躲避潜在的危险。促肾上腺皮质释放因子 (CRF) 神经元对压力高度激活;然而,目前尚不清楚这种活动如何参与应激引发的运动。外苍白球 (GPe) 表达高水平的 CRF 主要受体 CRFR1,这表明 GPe 可能作为应激相关信息到达基底神经节回路的入口点,最终控制运动输出。事实上,CRF 神经元的投射存在于 GPe 中,与 CRFR1 阳性神经元直接接触。GPe 中的 CRFR1 表达具有异质性;典型的 GPe 神经元选择性表达 CRFR1,而 arkypallidal 神经元则不表达。此外,CRF 通过激活 CRFR1 兴奋 CRFR1 阳性 GPe 神经元,而附近的 CRFR1 阴性神经元对 CRF 无反应。使用单突触狂犬病毒追踪技术,我们显示应激激活的下丘脑室旁核 (PVN)、杏仁核中央核 (CeA) 和终纹床核 (BST) 的 CRF 神经元与 GPe 中的 CRFR1 阳性神经元形成突触连接,这是一个前所未有的连接边缘系统与基底神经节的回路。CRF 神经元也与 Npas1 神经元形成突触,但大多数 Npas1 神经元是 arkypallidal,不表达 CRFR1。有趣的是,典型和 arkypallidal 神经元接受来自富含 CRF 的核的不同模式的神经支配。下丘脑 CRF 神经元优先靶向典型神经元,而杏仁核 CRF 神经元优先靶向 arkypallidal 神经元,这表明这两个输入到 GPe 可能对 GPe 输出有不同的影响。总之,这些数据描述了一个新的神经回路,通过该回路,边缘系统携带的应激相关信息通过 CRF 在 GPe 中发出信号,从而影响运动输出。