Suppr超能文献

用于高密度神经记录植入物的低功耗电流复用模拟前端。

A Low-Power Current-Reuse Analog Front-End for High-Density Neural Recording Implants.

出版信息

IEEE Trans Biomed Circuits Syst. 2018 Apr;12(2):271-280. doi: 10.1109/TBCAS.2018.2805278.

Abstract

Studying brain activity in vivo requires collecting bioelectrical signals from several microelectrodes simultaneously in order to capture neuron interactions. In this work, we present a new current-reuse analog front-end (AFE), which is scalable to very large numbers of recording channels, thanks to its small implementation silicon area and its low-power consumption. This current-reuse AFE, which is including a low-noise amplifier (LNA) and a programmable gain amplifier (PGA), employs a new fully differential current-mirror topology using fewer transistors, and improving several design parameters, such as power consumption and noise, over previous current-reuse amplifier circuit implementations. We show that the proposed current-reuse amplifier can provide a theoretical noise efficiency factor (NEF) as low as 1.01, which is the lowest reported theoretical NEF provided by an LNA topology. A foue-channel current-reuse AFE implemented in a CMOS 0.18-μm technology is presented as a proof-of-concept. T-network capacitive circuits are used to decrease the size of input capacitors and to increase the gain accuracy in the AFE. The measured performance of the whole AFE is presented. The total power consumption per channel, including the LNA and the PGA stage, is 9 μW (4.5 μW for LNA and 4.5 μW for PGA), for an input referred noise of 3.2 μV, achieving a measured NEF of 1.94. The entire AFE presents three selectable gains of 35.04, 43.1, and 49.5 dB, and occupies a die area of 0.072 mm per channel. The implemented circuit has a measured inter-channel rejection ratio of 54 dB. In vivo recording results obtained with the proposed AFE are reported. It successfully allows collecting low-amplitude extracellular action potential signals from a tungsten wire microelectrode implanted in the hippocampus of a laboratory mouse.

摘要

研究活体大脑活动需要同时从多个微电极中采集生物电信号,以捕捉神经元的相互作用。在这项工作中,我们提出了一种新的电流复用模拟前端(AFE),由于其小的实现硅面积和低功耗,它可以扩展到非常多的记录通道。这种电流复用 AFE 包括一个低噪声放大器(LNA)和一个可编程增益放大器(PGA),采用了一种新的全差分电流镜拓扑结构,使用的晶体管更少,并改善了几个设计参数,如功耗和噪声,优于以前的电流复用放大器电路实现。我们表明,所提出的电流复用放大器可以提供理论噪声效率因子(NEF)低至 1.01,这是 LNA 拓扑提供的最低理论 NEF。作为概念验证,我们提出了一种在 CMOS 0.18-μm 技术中实现的四通道电流复用 AFE。T 网络电容电路用于减小输入电容的尺寸,并提高 AFE 中的增益精度。展示了整个 AFE 的测量性能。每个通道的总功耗,包括 LNA 和 PGA 级,为 9μW(LNA 为 4.5μW,PGA 为 4.5μW),输入参考噪声为 3.2μV,实现了测量的 NEF 为 1.94。整个 AFE 具有 3 个可选增益,分别为 35.04、43.1 和 49.5dB,占用每个通道的芯片面积为 0.072mm。实现的电路具有 54dB 的测量通道间抑制比。报告了使用所提出的 AFE 获得的活体记录结果。它成功地允许从植入实验室小鼠海马体的钨丝微电极中采集低幅度的细胞外动作电位信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验