Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269.
Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731.
Hippocampus. 2018 Jun;28(6):416-430. doi: 10.1002/hipo.22841. Epub 2018 Apr 16.
Hippocampal long-term potentiation (LTP) is a cellular memory mechanism. For LTP to endure, new protein synthesis is required immediately after induction and some of these proteins must be delivered to specific, presumably potentiated, synapses. Local synthesis in dendrites could rapidly provide new proteins to synapses, but the spatial distribution of translation following induction of LTP is not known. Here, we quantified polyribosomes, the sites of local protein synthesis, in CA1 stratum radiatum dendrites and spines from postnatal day 15 rats. Hippocampal slices were rapidly fixed at 5, 30, or 120 min after LTP induction by theta-burst stimulation (TBS). Dendrites were reconstructed through serial section electron microscopy from comparable regions near the TBS or control electrodes in the same slice, and in unstimulated hippocampus that was perfusion-fixed in vivo. At 5 min after induction of LTP, polyribosomes were elevated in dendritic shafts and spines, especially near spine bases and in spine heads. At 30 min, polyribosomes remained elevated only in spine bases. At 120 min, both spine bases and spine necks had elevated polyribosomes. Polyribosomes accumulated in spines with larger synapses at 5 and 30 min, but not at 120 min. Small spines, meanwhile, proliferated dramatically by 120 min, but these largely lacked polyribosomes. The number of ribosomes per polyribosome is variable and may reflect differences in translation regulation. In dendritic spines, but not shafts, there were fewer ribosomes per polyribosome in the slice conditions relative to in vivo, but this recovered transiently in the 5 min LTP condition. Overall, our data show that LTP induces a rapid, transient upregulation of large polyribosomes in larger spines, and a persistent upregulation of small polyribosomes in the bases and necks of small spines. This is consistent with local translation supporting enlargement of potentiated synapses within minutes of LTP induction.
海马长时程增强(LTP)是一种细胞记忆机制。为了使 LTP 持续存在,在诱导后立即需要新的蛋白质合成,并且其中一些蛋白质必须递送到特定的、推测被增强的突触。树突中的局部合成可以快速为突触提供新的蛋白质,但 LTP 诱导后翻译的空间分布尚不清楚。在这里,我们在来自第 15 天龄大鼠的 CA1 辐射状层的树突和棘突中定量了多核糖体,即局部蛋白质合成的部位。在通过 theta 爆发刺激(TBS)诱导 LTP 后 5、30 或 120 分钟,快速将海马切片固定。通过在相同切片中的 TBS 或对照电极附近的可比区域或在体内灌流固定的未刺激海马体中,通过连续切片电子显微镜对树突进行重建。在 LTP 诱导后 5 分钟,多核糖体在树突干和棘突中升高,特别是在棘突基部和棘突头部附近。在 30 分钟时,多核糖体仅在棘突基部升高。在 120 分钟时,棘突基部和棘突颈部都有升高的多核糖体。在 5 和 30 分钟时,多核糖体在具有较大突触的棘突中积累,但在 120 分钟时没有。同时,小棘突在 120 分钟时急剧增殖,但这些棘突大部分缺乏多核糖体。每个多核糖体的核糖体数量是可变的,可能反映了翻译调节的差异。在树突棘突中,但不在树突干中,与体内条件相比,切片条件下每个多核糖体的核糖体数量较少,但在 5 分钟的 LTP 条件下会短暂恢复。总体而言,我们的数据表明,LTP 诱导较大的多核糖体在较大的棘突中快速、短暂地上调,而在小棘突的基部和颈部中小的多核糖体持续上调。这与 LTP 诱导后几分钟内支持增强突触扩大的局部翻译一致。