Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin , Austin, TX 78712, USA.
Center for Neuroscience, University of California , Davis, CA 95618, USA.
Philos Trans R Soc Lond B Biol Sci. 2024 Jul 29;379(1906):20230224. doi: 10.1098/rstb.2023.0224. Epub 2024 Jun 10.
Synapses form trillions of connections in the brain. Long-term potentiation (LTP) and long-term depression (LTD) are cellular mechanisms vital for learning that modify the strength and structure of synapses. Three-dimensional reconstruction from serial section electron microscopy reveals three distinct pre- to post-synaptic arrangements: strong active zones (AZs) with tightly docked vesicles, weak AZs with loose or non-docked vesicles, and nascent zones (NZs) with a postsynaptic density but no presynaptic vesicles. Importantly, LTP can be temporarily saturated preventing further increases in synaptic strength. At the onset of LTP, vesicles are recruited to NZs, converting them to AZs. During recovery of LTP from saturation (1-4 h), new NZs form, especially on spines where AZs are most enlarged by LTP. Sentinel spines contain smooth endoplasmic reticulum (SER), have the largest synapses and form clusters with smaller spines lacking SER after LTP recovers. We propose a model whereby NZ plasticity provides synapse-specific AZ expansion during LTP and loss of weak AZs that drive synapse shrinkage during LTD. Spine clusters become functionally engaged during LTP or disassembled during LTD. Saturation of LTP or LTD probably acts to protect recently formed memories from ongoing plasticity and may account for the advantage of spaced over massed learning. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
突触在大脑中形成数万亿个连接。长时程增强(LTP)和长时程抑制(LTD)是学习过程中至关重要的细胞机制,它们可以改变突触的强度和结构。通过连续切片电子显微镜的三维重建,可以揭示三种不同的前突触到后突触排列:具有紧密对接囊泡的强活性区(AZ)、具有松散或未对接囊泡的弱 AZ 以及具有后突触密度但没有前突触囊泡的新生区(NZ)。重要的是,LTP 可以暂时饱和,从而阻止突触强度的进一步增加。在 LTP 的起始阶段,囊泡被募集到 NZ 中,将其转化为 AZ。在 LTP 饱和后的恢复期间(1-4 小时),会形成新的 NZ,尤其是在 LTP 使 AZ 最大程度扩张的棘突上。哨兵棘突含有光滑内质网(SER),具有最大的突触,并且在 LTP 恢复后与缺乏 SER 的较小棘突形成簇。我们提出了一个模型,即 NZ 可塑性在 LTP 期间提供特定于突触的 AZ 扩展,并在 LTD 期间驱动弱 AZ 的丧失,从而导致突触收缩。棘突簇在 LTP 期间变得具有功能性,而在 LTD 期间则解体。LTP 或 LTD 的饱和可能会保护最近形成的记忆免受持续的可塑性影响,这可能解释了间隔学习优于集中学习的优势。本文是“长时程增强:50 年回顾”讨论会议的一部分。