Suppr超能文献

基于极限学习机和增强型雪消融优化器优化的深度卷积神经网络的足部骨折诊断。

Foot fractures diagnosis using a deep convolutional neural network optimized by extreme learning machine and enhanced snow ablation optimizer.

机构信息

College of Modern Education Technology, College of Yiyang Normal, Yiyang, 413000, Hunan, China.

Changjun Yueliangdao School No. 3 Primary School, Changsha, 410000, Hunan, China.

出版信息

Sci Rep. 2024 Nov 18;14(1):28428. doi: 10.1038/s41598-024-80132-8.

Abstract

The current investigation proposes a novel hybrid methodology for the diagnosis of the foot fractures. The method uses a combination of deep learning methods and a metaheuristic to provide an efficient model for the diagnosis of the foot fractures problem. the method has been first based on applying some preprocessing steps before using the model for the features extraction and classification of the problem. the main model is based on a pre-trained ZFNet. The final layers of the network have been substituted using an extreme learning machine (ELM) in its entirety. The ELM part also optimized based on a new developed metaheuristic, called enhanced snow ablation optimizer (ESAO), to achieve better results. for validating the effectiveness of the proposed ZFNet/ELM/ESAO-based model, it has been applied to a standard benchmark from Institutional Review Board (IRB) and the findings have been compared to some different high-tech methods, including Decision Tree / K-Nearest Neighbour (DT/KNN), Linear discriminant analysis (LDA), Inception-ResNet Faster R-CNN architecture (FRCNN), Transfer learning‑based ensemble convolutional neural network (TL-ECNN), and combined model containing a convolutional neural network and long short-term memory (DCNN/LSTM). Final results show that using the proposed ZFNet/ELM/ESAO-based can be utilized as an efficient model for the diagnosis of the foot fractures.

摘要

当前的研究提出了一种新颖的混合方法,用于诊断足部骨折。该方法结合了深度学习方法和元启发式算法,为足部骨折问题的诊断提供了一个高效的模型。该方法首先基于应用一些预处理步骤,然后使用模型进行特征提取和分类。主要模型基于预先训练的 ZFNet。网络的最后几层完全使用极端学习机(ELM)替代。ELM 部分也基于新开发的元启发式算法(称为增强雪消融优化器(ESAO))进行了优化,以获得更好的结果。为了验证基于 ZFNet/ELM/ESAO 的模型的有效性,它已应用于机构审查委员会(IRB)的标准基准,并将研究结果与其他一些高科技方法进行了比较,包括决策树/K-最近邻(DT/KNN)、线性判别分析(LDA)、Inception-ResNet Faster R-CNN 架构(FRCNN)、基于迁移学习的集成卷积神经网络(TL-ECNN)和包含卷积神经网络和长短时记忆(DCNN/LSTM)的组合模型。最终结果表明,基于所提出的 ZFNet/ELM/ESAO 的方法可以用作诊断足部骨折的有效模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/11574293/0d448437d17b/41598_2024_80132_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验