Suppr超能文献

优化乳腺癌分类:结合密集网络和残差网络的定制注意力集成方法以增强检测效果

Refining breast cancer classification: Customized attention integration approaches with dense and residual networks for enhanced detection.

作者信息

Alam Mohammad Sakif, Efat Anwar Hossain, Hasan Sm Mahedy, Uddin Md Palash

机构信息

Department of Computer Science and Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh.

Department of Computer Science and Engineering, IUBAT - International University of Business Agriculture and Technology, Dhaka, Bangladesh.

出版信息

Digit Health. 2025 Jan 6;11:20552076241309947. doi: 10.1177/20552076241309947. eCollection 2025 Jan-Dec.

Abstract

OBJECTIVE

Breast cancer detection is critical for timely and effective treatment, and automatic detection systems can significantly reduce human error and improve diagnosis speed. This study aims to develop an accurate and robust framework for classifying breast cancer into benign and malignant categories using a novel machine learning architecture.

METHODS

We propose a dense-ResNet attention integration (DRAI) architecture that combines DenseNet and ResNet models with three attention mechanisms to enhance feature extraction from the BreakHis dataset. The attention mechanisms focus on regionally important features, improving classification accuracy. A triple-level ensemble (TLE) method combines the performance of multiple models, further enhancing prediction accuracy.

RESULTS

The proposed DRAI architecture with TLE achieves an accuracy of 99.58% in classifying breast cancer into benign and malignant categories, surpassing existing methodologies. This high accuracy demonstrates the effectiveness of the fusion architecture and its ability to reduce manual errors in breast cancer diagnosis.

CONCLUSION

The DRAI architecture with TLE provides a robust, automated framework for breast cancer classification. Its exceptional accuracy lays a solid foundation for future advancements in automated diagnostics and offers a reliable method for aiding early breast cancer detection.

摘要

目的

乳腺癌检测对于及时有效的治疗至关重要,自动检测系统可显著减少人为误差并提高诊断速度。本研究旨在开发一种准确且稳健的框架,使用新颖的机器学习架构将乳腺癌分为良性和恶性类别。

方法

我们提出了一种密集残差网络注意力集成(DRAI)架构,该架构将密集网络(DenseNet)和残差网络(ResNet)模型与三种注意力机制相结合,以增强从乳腺组织病理图像数据库(BreakHis)数据集中提取特征的能力。注意力机制聚焦于区域重要特征,提高分类准确率。一种三级集成(TLE)方法结合了多个模型的性能,进一步提高预测准确率。

结果

所提出的带有TLE的DRAI架构在将乳腺癌分为良性和恶性类别时,准确率达到99.58%,超过了现有方法。这种高准确率证明了融合架构的有效性及其减少乳腺癌诊断中人为误差的能力。

结论

带有TLE的DRAI架构为乳腺癌分类提供了一个稳健的自动化框架。其卓越的准确率为自动诊断的未来发展奠定了坚实基础,并为辅助早期乳腺癌检测提供了一种可靠方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b463/11705333/00506e1c3702/10.1177_20552076241309947-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验