Suppr超能文献

室温九微米波长光电探测器和千兆赫频率外差接收器。

Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers.

机构信息

Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMS 7162, 75013 Paris, France.

School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT Leeds, UK.

出版信息

Nature. 2018 Apr 5;556(7699):85-88. doi: 10.1038/nature25790. Epub 2018 Mar 26.

Abstract

Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.

摘要

室温操作对于任何旨在提供低成本、紧凑型系统以实现广泛应用的光电技术都是至关重要的。在这一方向上的一项最新技术进展是用于热成像的测辐射热计检测,它在室温下已经实现了相对较高的灵敏度和视频速率(约 60 赫兹)。然而,由于热诱导暗电流,对于目标波长在 8 到 12 微米之间的半导体光电探测器,室温操作仍然是一个巨大的挑战,所有相关的应用,如成像、环境遥感和基于激光的自由空间通信,都只能在低温下实现。对于这些器件,高灵敏度和高速率从来都与高温操作不兼容。在这里,我们展示了一种由亚波长金属谐振器组成的超材料制成的长波长(九微米)红外量子阱光电探测器,其性能在室温下与最先进的技术相比有了显著提高。这是因为每个谐振器的光子收集面积比其电面积大得多,从而大大降低了器件的暗电流。此外,我们还表明,我们的光子结构克服了材料的固有限制,例如随着温度的升高电子漂移速度的下降,这限制了低温操作下的常规几何形状。最后,器件的物理面积减小和响应率提高使我们能够利用量子探测器的固有高频响应在室温下工作。通过在探测器上混合两个量子级联激光器的频率,探测器作为外差接收器,我们已经测量到了一个高于 4 吉赫兹(GHz)的高频信号。因此,这些宽带非制冷探测器可以受益于高速(千兆位每秒)多通道相干数据传输和高精度分子光谱等技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验