Suppr超能文献

H 电流和 M 电流的动态相互作用控制肌萎缩侧索硬化症运动神经元的过度兴奋。

Dynamic interplay between H-current and M-current controls motoneuron hyperexcitability in amyotrophic lateral sclerosis.

机构信息

Biomedical Engineering and Neuroscience research group, The MARCS Institute, Western Sydney University, Penrith, NSW, 2751, Australia.

School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.

出版信息

Cell Death Dis. 2019 Apr 5;10(4):310. doi: 10.1038/s41419-019-1538-9.

Abstract

Amyotrophic lateral sclerosis (ALS) is a type of motor neuron disease (MND) in which humans lose motor functions due to progressive loss of motoneurons in the cortex, brainstem, and spinal cord. In patients and in animal models of MND it has been observed that there is a change in the properties of motoneurons, termed neuronal hyperexcitability, which is an exaggerated response of the neurons to a stimulus. Previous studies suggested neuronal excitability is one of the leading causes for neuronal loss, however the factors that instigate excitability in neurons over the course of disease onset and progression are not well understood, as these studies have looked mainly at embryonic or early postnatal stages (pre-symptomatic). As hyperexcitability is not a static phenomenon, the aim of this study was to assess the overall excitability of upper motoneurons during disease progression, specifically focusing on their oscillatory behavior and capabilities to fire repetitively. Our results suggest that increases in the intrinsic excitability of motoneurons are a global phenomenon of aging, however the cellular mechanisms that underlie this hyperexcitability are distinct in SOD1 ALS mice compared with wild-type controls. The ionic mechanism driving increased excitability involves alterations of the expression levels of HCN and KCNQ channel genes leading to a complex dynamic of H-current and M-current activation. Moreover, we show a negative correlation between the disease onset and disease progression, which correlates with a decrease in the expression level of HCN and KCNQ channels. These findings provide a potential explanation for the increased vulnerability of motoneurons to ALS with aging.

摘要

肌萎缩侧索硬化症(ALS)是一种运动神经元疾病(MND),由于大脑皮层、脑干和脊髓中的运动神经元逐渐丧失,人类会失去运动功能。在 MND 患者和动物模型中观察到,运动神经元的特性发生了变化,称为神经元过度兴奋,这是神经元对刺激的过度反应。先前的研究表明,神经元兴奋性是神经元丧失的主要原因之一,然而,在疾病发作和进展过程中引发神经元兴奋性的因素尚不清楚,因为这些研究主要集中在胚胎或出生后早期(无症状前)。由于过度兴奋不是一种静态现象,本研究的目的是评估疾病进展过程中上位运动神经元的整体兴奋性,特别是关注其振荡行为和重复放电的能力。我们的结果表明,运动神经元的内在兴奋性增加是衰老的普遍现象,然而,与野生型对照相比,SOD1 ALS 小鼠中这种过度兴奋的细胞机制是不同的。驱动兴奋性增加的离子机制涉及 HCN 和 KCNQ 通道基因表达水平的改变,导致 H 电流和 M 电流激活的复杂动态变化。此外,我们还显示了疾病发作和疾病进展之间的负相关,这与 HCN 和 KCNQ 通道表达水平的降低有关。这些发现为运动神经元在衰老时对 ALS 的易感性增加提供了一个潜在的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32ff/6450866/4254e2490dca/41419_2019_1538_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验