Leroy Félix, Lamotte d'Incamps Boris, Imhoff-Manuel Rebecca D, Zytnicki Daniel
Laboratory of Neurophysics and Physiology, UMR 8119, Paris Descartes University, Paris, France.
Elife. 2014 Oct 14;3:e04046. doi: 10.7554/eLife.04046.
In amyotrophic lateral sclerosis (ALS) the large motoneurons that innervate the fast-contracting muscle fibers (F-type motoneurons) are vulnerable and degenerate in adulthood. In contrast, the small motoneurons that innervate the slow-contracting fibers (S-type motoneurons) are resistant and do not degenerate. Intrinsic hyperexcitability of F-type motoneurons during early postnatal development has long been hypothesized to contribute to neural degeneration in the adult. Here, we performed a critical test of this hypothesis by recording from identified F- and S-type motoneurons in the superoxide dismutase-1 mutant G93A (mSOD1), a mouse model of ALS at a neonatal age when early pathophysiological changes are observed. Contrary to the standard hypothesis, excitability of F-type motoneurons was unchanged in the mutant mice. Surprisingly, the S-type motoneurons of mSDO1 mice did display intrinsic hyperexcitability (lower rheobase, hyperpolarized spiking threshold). As S-type motoneurons are resistant in ALS, we conclude that early intrinsic hyperexcitability does not contribute to motoneuron degeneration.
在肌萎缩侧索硬化症(ALS)中,支配快速收缩肌纤维的大型运动神经元(F型运动神经元)在成年期易受损伤并发生退化。相比之下,支配慢速收缩纤维的小型运动神经元(S型运动神经元)具有抗性,不会退化。长期以来,人们一直推测出生后早期发育期间F型运动神经元的内在兴奋性过高会导致成年期神经退化。在此,我们通过记录超氧化物歧化酶-1突变体G93A(mSOD1)中已识别的F型和S型运动神经元来对这一假设进行关键测试,mSOD1是一种ALS小鼠模型,在新生期可观察到早期病理生理变化。与标准假设相反,突变小鼠中F型运动神经元的兴奋性没有变化。令人惊讶的是,mSDO1小鼠的S型运动神经元确实表现出内在兴奋性过高(阈强度降低,动作电位发放阈值超极化)。由于S型运动神经元在ALS中具有抗性,我们得出结论,早期内在兴奋性过高不会导致运动神经元退化。