Suppr超能文献

槲皮素固定化二氧化钛促进新骨形成:载药方式对体内、体外骨髓基质细胞分化的影响。

Kaempferol-immobilized titanium dioxide promotes formation of new bone: effects of loading methods on bone marrow stromal cell differentiation in vivo and in vitro.

机构信息

Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan.

Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.

出版信息

Int J Nanomedicine. 2018 Mar 19;13:1665-1676. doi: 10.2147/IJN.S150786. eCollection 2018.

Abstract

BACKGROUND

Surface modification of titanium dioxide (TiO) implants promotes bone formation and shortens the osseointegration period. Kaempferol is a flavonoid that has the capacity to promote osteogenic differentiation in bone marrow stromal cells. The aim of this study was to promote bone formation around kaempferol immobilized on TiO implants.

METHODS

There were four experimental groups. Alkali-treated TiO samples (implants and discs) were used as a control and immersed in Dulbecco's phosphate-buffered saline (DPBS) (Al-Ti). For the coprecipitation sample (Al-cK), the control samples were immersed in DPBS containing 50 µg kaempferol/100% ethanol. For the adsorption sample (Al-aK), 50 µg kaempferol/100% ethanol was dropped onto control samples. The surface topography of the TiO implants was observed by scanning electron microscopy with energy-dispersive X-ray spectroscopy, and a release assay was performed. For in vitro experiments, rat bone marrow stromal cells (rBMSCs) were cultured on each of the TiO samples to analyze cell proliferation, alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. For in vivo experiments, TiO implants placed on rat femur bones were analyzed for bone-implant contact by histological methods.

RESULTS

Kaempferol was detected on the surface of Al-cK and Al-aK. The results of the in vitro study showed that rBMSCs cultured on Al-cK and Al-aK promoted alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. The in vivo histological analysis revealed that Al-cK and Al-aK stimulated new bone formation around implants.

CONCLUSION

TiO implant-immobilized kaempferol may be an effective tool for bone regeneration around dental implants.

摘要

背景

二氧化钛(TiO)植入物的表面改性可促进骨形成并缩短骨整合期。山奈酚是一种类黄酮,具有促进骨髓基质细胞成骨分化的能力。本研究旨在促进山奈酚固定在 TiO 植入物周围的骨形成。

方法

有四个实验组。碱处理的 TiO 样品(植入物和圆盘)用作对照并浸入 Dulbecco 的磷酸盐缓冲盐水(DPBS)(Al-Ti)中。对于共沉淀样品(Al-cK),对照样品浸入含有 50 µg 山奈酚/100%乙醇的 DPBS 中。对于吸附样品(Al-aK),将 50 µg 山奈酚/100%乙醇滴加到对照样品上。通过扫描电子显微镜和能量色散 X 射线光谱观察 TiO 植入物的表面形貌,并进行释放试验。在体外实验中,将大鼠骨髓基质细胞(rBMSCs)培养在每种 TiO 样品上,以分析细胞增殖、碱性磷酸酶活性、钙沉积和成骨分化。在体内实验中,通过组织学方法分析放置在大鼠股骨上的 TiO 植入物的骨-植入物接触情况。

结果

在 Al-cK 和 Al-aK 表面检测到山奈酚。体外研究结果表明,rBMSCs 在 Al-cK 和 Al-aK 上培养可促进碱性磷酸酶活性、钙沉积和成骨分化。体内组织学分析表明,Al-cK 和 Al-aK 可刺激植入物周围的新骨形成。

结论

TiO 植入物固定的山奈酚可能是促进牙种植体周围骨再生的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b20/5865554/45aaede8406f/ijn-13-1665Fig1.jpg

相似文献

3
Enhanced Osseointegration of Titanium Implants by Surface Modification with Silicon-doped Titania Nanotubes.
Int J Nanomedicine. 2020 Nov 3;15:8583-8594. doi: 10.2147/IJN.S270311. eCollection 2020.
6
Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants.
Acta Biomater. 2017 Feb;49:590-603. doi: 10.1016/j.actbio.2016.11.067. Epub 2016 Nov 30.
8
Peptide LL-37 coating on micro-structured titanium implants to facilitate bone formation in vivo via mesenchymal stem cell recruitment.
Acta Biomater. 2018 Oct 15;80:412-424. doi: 10.1016/j.actbio.2018.09.036. Epub 2018 Sep 25.
9
Rat bone marrow stromal cell-conditioned medium promotes early osseointegration of titanium implants.
Int J Oral Maxillofac Implants. 2013 Sep-Oct;28(5):1360-9. doi: 10.11607/jomi.2799.

引用本文的文献

1
Progress in the application of epimedium and its major bioactive components in the treatment of orthopedic diseases.
Front Pharmacol. 2025 Aug 12;16:1628602. doi: 10.3389/fphar.2025.1628602. eCollection 2025.
3
Developing Chinese herbal-based functional biomaterials for tissue engineering.
Heliyon. 2024 Mar 7;10(6):e27451. doi: 10.1016/j.heliyon.2024.e27451. eCollection 2024 Mar 30.
4
Flavonoid-Loaded Biomaterials in Bone Defect Repair.
Molecules. 2023 Sep 30;28(19):6888. doi: 10.3390/molecules28196888.
6
Traditional Chinese medicine promotes bone regeneration in bone tissue engineering.
Chin Med. 2022 Jul 20;17(1):86. doi: 10.1186/s13020-022-00640-5.
8
The Role of Flavonoids in the Osteogenic Differentiation of Mesenchymal Stem Cells.
Front Pharmacol. 2022 Apr 6;13:849513. doi: 10.3389/fphar.2022.849513. eCollection 2022.
9
Modification of implant surfaces to stimulate mesenchymal cell activation.
Bull Natl Res Cent. 2022;46(1):52. doi: 10.1186/s42269-022-00743-x. Epub 2022 Mar 4.
10
Traditional Chinese Medicine Compound-Loaded Materials in Bone Regeneration.
Front Bioeng Biotechnol. 2022 Feb 18;10:851561. doi: 10.3389/fbioe.2022.851561. eCollection 2022.

本文引用的文献

1
Drug release characteristics of quercetin-loaded TiO nanotubes coated with chitosan.
Int J Biol Macromol. 2016 Dec;93(Pt B):1633-1638. doi: 10.1016/j.ijbiomac.2016.04.034. Epub 2016 Apr 13.
2
Molecular Targeting of ERKs/RSK2 Signaling Axis in Cancer Prevention.
J Cancer Prev. 2015 Sep;20(3):165-71. doi: 10.15430/JCP.2015.20.3.165.
3
Kaempferol and inflammation: From chemistry to medicine.
Pharmacol Res. 2015 Sep;99:1-10. doi: 10.1016/j.phrs.2015.05.002. Epub 2015 May 14.
5
Boon and Bane of Inflammation in Bone Tissue Regeneration and Its Link with Angiogenesis.
Tissue Eng Part B Rev. 2015 Aug;21(4):354-64. doi: 10.1089/ten.TEB.2014.0677. Epub 2015 Apr 1.
7
How does the pathophysiological context influence delivery of bone growth factors?
Adv Drug Deliv Rev. 2015 Apr;84:68-84. doi: 10.1016/j.addr.2014.10.010. Epub 2014 Oct 17.
9
Rat bone marrow stromal cell-conditioned medium promotes early osseointegration of titanium implants.
Int J Oral Maxillofac Implants. 2013 Sep-Oct;28(5):1360-9. doi: 10.11607/jomi.2799.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验