Suppr超能文献

设计用于选择性光激活纳米疗法的超氧化物生成量子点。

Designing Superoxide-Generating Quantum Dots for Selective Light-Activated Nanotherapy.

作者信息

Goodman Samuel M, Levy Max, Li Fei-Fei, Ding Yuchen, Courtney Colleen M, Chowdhury Partha P, Erbse Annette, Chatterjee Anushree, Nagpal Prashant

机构信息

Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States.

Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States.

出版信息

Front Chem. 2018 Mar 14;6:46. doi: 10.3389/fchem.2018.00046. eCollection 2018.

Abstract

The rapid emergence of superbugs, or multi-drug resistant (MDR) organisms, has prompted a search for novel antibiotics, beyond traditional small-molecule therapies. Nanotherapeutics are being investigated as alternatives, and recently superoxide-generating quantum dots (QDs) have been shown as important candidates for selective light-activated therapy, while also potentiating existing antibiotics against MDR superbugs. Their therapeutic action is selective, can be tailored by simply changing their quantum-confined conduction-valence band (CB-VB) positions and alignment with different redox half-reactions-and hence their ability to generate specific radical species in biological media. Here, we show the design of superoxide-generating QDs using optimal QD material and size well-matched to superoxide redox potential, charged ligands to modulate their uptake in cells and selective redox interventions, and core/shell structures to improve their stability for therapeutic action. We show that cadmium telluride (CdTe) QDs with conduction band (CB) position at -0.5 V with respect to Normal Hydrogen Electron (NHE) and visible 2.4 eV bandgap generate a large flux of selective superoxide radicals, thereby demonstrating the effective light-activated therapy. Although the positively charged QDs demonstrate large cellular uptake, they bind indiscriminately to cell surfaces and cause non-selective cell death, while negatively charged and zwitterionic QD ligands reduce the uptake and allow selective therapeutic action via interaction with redox species. The stability of designed QDs in biologically-relevant media increases with the formation of core-shell QD structures, but an appropriate design of core-shell structures is needed to minimize any reduction in charge injection efficiency to adsorbed oxygen molecules (to form superoxide) and maintain similar quantitative generation of tailored redox species, as measured using electron paramagnetic resonance (EPR) spectroscopy and electrochemical impedance spectroscopy (EIS). Using these findings, we demonstrate the rational design of QDs as selective therapeutic to kill more than 99% of a priority class I pathogen, thus providing an effective therapy against MDR superbugs.

摘要

超级细菌,即多重耐药(MDR)微生物的迅速出现,促使人们寻找超越传统小分子疗法的新型抗生素。纳米疗法正在作为替代方案进行研究,最近,能产生超氧化物的量子点(QD)已被证明是选择性光激活疗法的重要候选物,同时还能增强现有抗生素对MDR超级细菌的作用。它们的治疗作用具有选择性,可以通过简单地改变其量子限制导带-价带(CB-VB)位置以及与不同氧化还原半反应的排列方式来进行调整,从而改变它们在生物介质中产生特定自由基种类的能力。在此,我们展示了能产生超氧化物的量子点的设计,该设计采用了与超氧化物氧化还原电位、带电配体相匹配的最佳量子点材料和尺寸,以调节其在细胞中的摄取和选择性氧化还原干预,并采用核壳结构来提高其治疗作用的稳定性。我们表明,相对于标准氢电极(NHE),导带(CB)位置为-0.5 V且可见光带隙为2.4 eV的碲化镉(CdTe)量子点会产生大量选择性超氧自由基,从而证明了有效的光激活疗法。尽管带正电荷的量子点显示出大量的细胞摄取,但它们会无差别地结合到细胞表面并导致非选择性细胞死亡,而带负电荷和两性离子的量子点配体则会减少摄取,并通过与氧化还原物质的相互作用实现选择性治疗作用。设计的量子点在生物相关介质中的稳定性会随着核壳量子点结构的形成而增加,但需要对核壳结构进行适当设计,以尽量减少电荷注入效率对吸附氧分子(形成超氧化物)的任何降低,并保持定制氧化还原物种的类似定量生成,这是通过电子顺磁共振(EPR)光谱和电化学阻抗谱(EIS)测量的。利用这些发现,我们展示了量子点作为选择性疗法的合理设计,可杀死超过99%的一类优先病原体,从而提供了一种针对MDR超级细菌的有效疗法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55f4/5861142/930f8f9a40fd/fchem-06-00046-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验